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Abstract
Lead (Pb), mercury (Hg), and fluoride (F) exposure during childhood is of concern owing to their toxicity. Also, evidence 
suggests that high and low exposure levels to manganese (Mn) and selenium (Se) during this vulnerable period are associ-
ated with an increased risk of adverse health effects. A reduced growth is associated with high Pb and F exposure; however, 
little is known about their impact on children’s body size, and there is a lack of consensus on the effects of Hg, Mn, and Se 
exposure on children’s anthropometric measures. This is particularly true for childhood metal co-exposures at levels relevant 
to the general population. We investigated the joint effects of exposure to a metal mixture (Pb, Mn, Hg, and Se in blood and 
F in plasma) on 6–11-year-old US children’s anthropometry (n = 1634). Median F, Pb, Mn, Hg, and Se concentrations were 
0.3 µmol/L, 0.5 µg/dL, 10.2 µg/L, 0.3 µg/L, and 178.0 µg/L, respectively. The joint effects of the five metals were modeled 
using Bayesian kernel machine and linear regressions. Pb and Mn showed opposite directions of associations with all outcome 
measured, where Pb was inversely associated with anthropometry. For body mass index and waist circumference, the effect 
estimates for Pb and Mn appeared stronger at high and low concentrations of the other metals of the mixture, respectively. 
Our findings suggest that metal co-exposures may influence children’s body mass and linear growth indicators, and that such 
relations may differ by the exposure levels of the components of the metal mixture.
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Introduction

Heavy metals pose a threat to human health because they 
are non-biodegradable and can be deposited in body tissues 
or organs to produce harm after initial exposure (Al Osman 
et al. 2019). Children are especially vulnerable because 
of their rapid growth and still developing detoxification 

mechanisms (Rodríguez-Barranco et al. 2013). Indicators 
of growth and body size in school-age children (e.g., height, 
weight, and waist circumference) play a role in school 
achievement (Crooks 1995), and physical and emotional 
health in childhood and adolescence (Gelander 2006). In 
addition to lifestyle factors (e.g., diet or physical activity), 
there has been interest in understanding the effect of envi-
ronmental exposures on children’s anthropometric measures.

A number of studies have examined whether exposure to 
trace elements (hereafter, “metals”) affect children’s body 
size and growth, but the effects at exposure levels relevant 
to the general population and co-exposures to metal mixtures 
remain poorly understood. Generally, the primary sources of 
metal exposure include ingestion through drinking water or 
diet, inhalation, and dermal contact (Buckley et al. 2020). 
Existing studies have investigated prenatal exposures and 
their effects on body size in utero, at birth or in early life, as 
well as postnatal exposure on growth throughout childhood. 
For postnatal exposures, lead (Pb) has received the most 
attention, with consistent evidence that higher Pb exposure 
associates with shorter stature (Burns et al. 2017; Deierlein 
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et al. 2019; Kerr et al. 2019; Raihan et al. 2018; Yang et al. 
2013; Zeng et al. 2019) and may reduce body weight indi-
cators across a wide range of ages (Cassidy-Bushrow et al. 
2016; Deierlein et al. 2019; Kerr et al. 2019; Scinicariello 
et al. 2013; Zeng et al. 2019). Fewer studies have been done 
on mercury (Hg), with two studies suggesting positive 
associations with Body Mass Index (BMI) in 0–10-year-
old children (Benefice et al. 2008; Gao et al. 2018). In con-
trast, another study found no association with Hg among 
children without permanent housing (Fábelová et al. 2018). 
High fluoride (F) exposure appears to negatively affect 
children’s height (Wang et al. 2007). Manganese (Mn) and 
Selenium (Se) are essential nutrients and as such are nec-
essary for proper growth and development (Lewicka et al. 
2017). Available evidence suggests that Mn and Se follow 
a U-shape dose–response curve with adverse effects at low 
and high exposure levels on birth outcomes and BMI among 
adults and young children (Ortega et al. 2013; Rayman 2012; 
Signes-Pastor et al. 2019; Wang et al. 2016). To date, nearly 
all studies considered exposures to a single metal at a time.

Exposure to toxic and nutrient metals occur simultane-
ously as a mixture in real-life scenarios (Valeri et al. 2017); 
however, there has been little investigation of metal co-
exposure effects on body size and growth during childhood. 
Three prior studies on postnatal exposures and children’s 
growth examined more than two metals (Fábelová et al. 
2018; Gardner et al. 2013; Zeng et al. 2019). Measurement 
of prenatal exposure to multiple metals has been more com-
mon (Bloom et al. 2015; Freire et al. 2019; Gleason et al. 
2016; Govarts et al. 2016; Sabra et al. 2017; Thomas et al. 
2015); yet none of these studies assessed the effects of metal 
mixtures.

To better understand the potential risks associated with 
metal co-exposures at levels relevant to the general popula-
tion and child anthropometry, we investigated the associa-
tions between blood concentration of metals, of nutritional 
(i.e., Mn and Se) and toxicological interest (i.e., F, Hg, and 
Pb), on body size and growth measurements of 6–11-year-
old US children included in the 2013–2016 National Health 
and Nutrition Examination Survey (NHANES).

Materials and Methods

Study Design and Population

Participants were part of the NHANES, an ongoing cross-
sectional survey conducted by the National Center for Health 
Statistics at the Centers for Disease Control and Prevention 
(CDC). The NHANES aims to assess the health and nutri-
tional status of the civilian, non-institutionalized population 
in the US. Participants are selected into NHANES using a 
stratified, multistage probability sampling strategy based on 

selection of counties, blocks, households, and individuals in 
the households. Details of recruitment and design are availa-
ble on the NHANES website (NHANES 2016a). Procedures 
for the NHANES have been approved by the National Center 
for Health Statistics Research Ethics Review Board. Our cur-
rent analyses included 6–11-year-old children participating 
in the 2013–2014 and 2015–2016 NHANES cycles.

Whole Blood Lead, Manganese, Total Mercury, 
and Selenium

Venous whole blood samples were collected by phleboto-
mists; Pb, Mn, Hg, and Se levels were measured using 
an Inductively Coupled Plasma Mass Spectrometer with 
Dynamic Reaction Cell Technology (ELAN® DRC II) at the 
National Center for Environmental Health. Detailed meth-
ods of these procedures are published elsewhere (NHANES 
2013a, 2015a). The lower limit of detection (LOD) was 
0.07 µg/dL for Pb, 0.99 µg/L for Mn, 0.28 µg/L for Hg, and 
24.48 µg/L for Se for the 2013–2016 study cycles (NHANES 
2013a, 2015a, 2016b, 2018). There were no observations 
below the LOD for Mn and Se. For Pb, only one observation 
was below the LOD. For Hg, 639 (39%) observations were 
below the LOD and they were evenly distributed by sex. 
Values below the LOD were entered as the LOD divided by 
the square root of two and included in statistical analyses 
(Lubin et al. 2004; Schisterman et al. 2006).

Plasma Fluoride

Concentrations of F from plasma samples were measured at 
the College of Dental Medicine, Georgia Regents University, 
Augusta, GA, using an ion-specific electrode. The LOD for 
this method is ~ 1 µmol/L (0.019 mg/L), which is usually 
higher than plasma F concentrations. To overcome this, the 
hexamethyldisiloxane facilitated diffusion method is applied, 
to transfer F from the plasma samples into an alkaline trap-
ping solution of smaller volume. Details of these methods 
have been published previously (NHANES 2013b, 2015b). 
There were no plasma F concentrations below the LOD.

Body Measures

Body measures of interest, such as weight (kg), waist cir-
cumference (cm), upper arm length (cm), and standing 
height (cm) were assessed in the Mobile Examination Center 
by health technicians. Children’s BMI (kg/m2) was calcu-
lated from weight and height measurements. Arm length 
was typically measured on the right side of the body, unless 
participants had a medical condition, amputation, or a cast 
on the right side. Weight was measured using a digital scale 
in kg. Detailed protocols have been previously published 
(NHANES 2013c, 2016a).
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Covariates

Demographic details for the children, such as age, sex, 
and race were provided by a proxy in an interview. Socio-
economic status was measured as poverty-to-income ratio 
(PIR). Total caloric intake (kcal) was calculated using a sin-
gle 24-h dietary recall. An interviewer-administered ques-
tionnaire asked about the number of people in the household 
who smoked tobacco. Smokers in the household (i.e., house-
hold members smokers ≥ 1) was used as a proxy for sec-
ondhand smoke. Physical activity was measured through an 
interviewer-administered questionnaire at the participants’ 
home using the Computer Assisted Personal Interview sys-
tem. Children reported whether or not they were engaged in 
physical activities outside of school in the preceding 7 days. 
They were asked about practicing common sports such as 
basketball, baseball, bike riding, dancing, etc. A total of 
thirty-three activities were queried. Then, similar questions 
were asked about 22 activities at school. For the current 
analysis, participants received a score of one for each activ-
ity they reported and zero otherwise. Two separate scores 
were calculated by summing the positive responses for the 
outside-of-school and school-based physical activities.

Statistical Analyses

For all statistical analyses, we excluded participants with 
missing values for the covariates. The Spearman’s coef-
ficients (ρ) were calculated for each metal pair and for 
anthropometric measurements. BMI, standing height, waist 
circumference, and upper arm length were approximately 
normally distributed. Plasma F and blood Pb, Mn, Hg, and 
Se concentrations were positively skewed. Covariate selec-
tion was based on prior studies as well as directed acyclic 
graphs using the DAGitty software; total calorie intake 
(kcal, continuous), race (Mexican American, non-Hispanic 
white, non-Hispanic black or another race, categorical), 
PIR (≤ 1.49 (the median) vs. > 1.49), children’s age (years, 
continuous), smoker/s in the household (yes vs. no), chil-
dren’s sex (boys vs. girls), and outside-of-school and school-
based physical activity scores (continuous) were included as 
potential confounders. The two physical activity scores were 
uncorrelated (Spearman’s ρ = 0.10).

Bayesian kernel machine regression (BKMR) was 
performed primarily as an exploratory method to investi-
gate interactions and joint effects of the five metals using 
the R package “bkmr” (Bobb et al.  2015, 2018). BKMR 
models were applied as Yi = h(Fi, Mni, Pbi, Sei, Hgi) + ßT 
Zi + ei, where Y is the continuous outcome of interest (i.e., 
BMI, standing height, waist circumference or upper arm 
length); h() is an exposure–response function that accom-
modates nonlinearity and interactions among mixture 
components: F, Pb, Mn, Hg, and Se concentrations natural 

log-transformed, centered and scaled; Z are the selected 
covariates and ß are the corresponding regression coef-
ficients. All models included 10,000 Markov chain Monte 
Carlo iterations using the Gaussian kernel, with 5000 used 
as burn-in. The BKMR model is not able to accommodate 
sample weights yet, and thus we used unweighted estima-
tion; however, all our models included several covariates 
that are used to calculate the weights (e.g., age, sex, or 
race) (Kim et al. 2017; Zhang et al. 2019).

Linear regression analyses were then conducted to fur-
ther evaluate and quantify the associations between metal 
exposure and children’s anthropometric measures. The F, 
Pb, Mn, Hg, and Se concentrations were log-transformed 
to approximate normal distribution and divided by their 
interquartile range (IQR) for normalization before inclu-
sion in the regression models. Anthropometric measure-
ments (i.e., BMI, standing height, waist circumference, 
and upper arm length) were entered in the models as 
dependent variables. A threshold of α = 0.05 was used to 
define associations as statistically significant. We first con-
ducted analyses in the overall sample (adjusted for sex), 
then stratified by sex. All analyses and graphics were per-
formed using R version 3.5.1 (R Core Team 2014).

Results

Study Population Characteristics

Out of 2703 children included in the 2013–2016 NHANES 
cycles, 2092 had blood samples analyzed for F, Pb, Mn, 
Hg and Se concentrations. Of those, 2049 had complete 
information on body size and growth parameters (i.e., 
BMI, standing height, waist circumference, and upper arm 
length). Finally, 1634 children, evenly distributed across 
cycles (n = 835 and n = 799 in 2013–2014 and 2015–2016, 
respectively) and sex (n = 839 boys and n = 795 girls), had 
complete data on the covariates and were included in the 
statistical analyses (Figure S1). The biochemical, socio-
economic, and anthropometric characteristics of the chil-
dren included in the analysis (n = 1634) did not differ from 
those who were excluded (n = 1069, Table S1). The studied 
children had a median age of 9 years and median F, Pb, 
Mn, Hg, and Se concentrations were 0.3 µmol/L, 0.5 µg/
dL, 10.2 µg/L, 0.3 µg/L, and 178.0 µg/L, respectively. The 
baseline study population characteristics did not differ by 
sex (Table 1). Blood metals concentrations were weakly 
correlated and had a Spearman’s ρ ranging from − 0.12 
to 0.12 (Figure S2). On the other hand, children’s body 
size indicators were highly correlated with a Spearman’s 
ρ > 0.9 for BMI and waist circumference (Figure S3).
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Bayesian Kernel Machine Regression

The main findings from the BKMR and linear regres-
sion models overall and stratified by sex are summarized 
in Table S2. Mn was positively associated with children’s 
BMI and waist circumference (Fig. 1A), and this association 
appeared stronger at lower percentiles of the other metals of 
the mixture (Fig. 1B). Conversely, Pb was negatively associ-
ated with BMI and waist circumference (Fig. 1A), and this 
association appeared stronger at higher percentiles of the 
other metals of the mixture (Fig. 1B). These relationships 
appeared linear; however, there was variability at lower Pb 
concentrations (Fig. 1A). Overall, higher variability at low 
and high metal concentrations is expected to be related to 

the limited number of observations at such exposure levels. 
When we added variable selection in the BKMR models, Mn 
and Pb were selected for inclusion in more than 50% of itera-
tions [Posterior Inclusion Probability (PIP) > 0.5] (Figure 
S4), and thus they were deemed to be important contribu-
tors of the variability of the outcomes (Barbieri and Berger 
2004; Coker et al. 2018; Laue et al. 2020). Effect estimate 
changes for an IQR increase of each component across the 
25th, 50th, and 75th percentiles of the other metals of the 
mixture suggested Mn and Pb interactions (Fig. 1B). The 
bivariate exposure–response functions support the find-
ings of a Mn-Pb interaction with BMI and waist circum-
ference (Figure S5). Generally, we found similar results in 
the sex-stratified analyses (Figures S6 and S7); however, 

Table 1   Selected characteristics of 6–11-year-old children from the 2013–2016 NHANES

BMI = Body Mass Index
1 Continuous variables = median (IQR)
2 Categorical variables = n (%)
3 Metal/trace element concentrations = median (min, IQR, max)
4 Meausred in plasma (µmol/L)
5 Measured in blood (µg/dL)
6 Measured in blood (µg/L)

Characteristics Overall sample (n = 1634) Boys (n = 839) Girls (n = 795)

Age (years) 9.0 (7.0–10.0)1 8.0 (7.0–10.0) 9.0 (7.0–10.0)
BMI (kg/m2) 17.7 (15.7–21.3) 17.3 (15.6–21.1) 18.2 (15.8–21.3)
Standing height (cm) 134.3 (125.8–144.2) 134.3 (126.1–143.4) 134.5 (125.3–145.0)
Waist circumference (cm) 62.2 (56.3–72.6) 61.2 (55.9–72.0) 64.1 (56.9–73.6)
Upper arm length (cm) 28.6 (26.3–32.0) 28.6 (26.3–0.8) 28.8 (26.2–31.3)
Energy (kcal) 1800 (1406–1905) 1858 (1480–2350) 1753 (1362–2168)
Outside of school physical activity 

score
3.0 (1.0–4.0) 3.0 (1.0–4.0) 2.0 (1.0–4.0)

At-school physical activity score 0.0 (0.0–1.0) 0.0 (0.0–1.0) 0.0 (0.0–1.0)
Poverty-to-income ratio
  ≤ median (1.49) 855 (52)2 431 (51) 424 (53)
  > median (1.49) 779 (48) 408 (49) 371 (47)
Race
 Mexican American 571 (35) 275 (33) 296 (37)
 Non-Hispanic white 450 (28) 242 (24) 208 (26)
 Non-Hispanic black 398 (24) 211 (25) 187 (23)
 Another race 215 (13) 111 (13) 104 (13)

Household members that smoke 431 (26) 233 (28) 198 (25)
Cycles
 2013–2014 835 (51) 436 (52) 399 (50)
 2015–2016 799 (49) 403 (48) 396 (50)

Metal/trace element concentrations
 F4 0.3 (0.1, 0.3–0.5, 4.0)3 0.3 (0.1, 0.3–0.5, 3.9) 0.3 (0.1, 0.2–0.4, 4.0)
 Pb5 0.5 (0.1, 0.4–0.8, 5.8) 0.5 (0.1, 0.4–0.8, 5.0) 0.5 (0.1, 0.4–0.7, 5.8)
 Mn6 10.2 (3.8, 8.4–12.6, 24.3) 9.8 (3.8, 7.9–12.2, 23.4) 10.7 (4.6, 8.8–13.0, 24.3)
 Hg6 0.3 (0.2, 0.2–0.5, 10.0) 0.3 (0.2, 0.2–0.5, 7.6) 0.3 (0.2, 0.2–0.5, 10.0)
 Se6 178.0 (110.2, 167.7–190.2, 238.5) 177.6 (110.2, 167.1–189.5, 238.5) 178.5 (138.7, 168.6–190.5, 227.0)



177Exposure to a Mixture of Metals and Growth Indicators in 6–11-Year-Old Children from the 2013–…

1 3

Fig. 1   Metal concentrations and anthropometric indicators of 
6–11-year-old children from the 2013 to 2016 NHANES. BKMR 
dose–response function and interactions within components of the 
metal mixture (n = 1634). Models are adjusted for total calorie intake 
(kcal, continuous), race (Mexican American, non-Hispanic white, 
non-Hispanic black or another race, categorical), poverty-to-income 
ratio (≤ 1.49 (the median) vs. > 1.49), smoker/s in the household (yes 
vs. no), children’s age (years, continuous), outside-of-school and at-

school activity scores (continuous), and child’s sex (boys vs. girls). A 
Univariate exposure–response functions and 95% confidence bands 
for each component with the other components fixed at the median. B 
Single component association (estimates and 95% credible intervals, 
gray dashed line at the null). This plot compares children’ size when 
a single component is at 75th vs. 25th percentile, when all the other 
exposures are fixed at either the 25th, 50th, or 75th percentile
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with less statistical precision and appearance of nonlinear 
dose–response, especially among boys. No clear associa-
tions were observed with the remaining components of the 
metal mixture and children’s anthropometric measurements 
(Fig. 1B).

Multiple Metal Linear Regression

Using multiple linear regression analyses, an IQR differ-
ence in blood Mn was associated with a 0.88 kg/m2 (95% 
Confidence Interval (CI) 0.59, 1.18) and 2.46 cm (95% CI 
1.69, 3.25) higher BMI and waist circumference, respec-
tively (Table 2). In addition, an IQR change in blood Mn was 
associated with a 0.20 cm (95% CI 0.05, 0.35) and 0.70 cm 
(95% CI 0.21, 1.19) difference in upper arm length and 
standing height, respectively (Table 2). The standing height 
estimate appeared stronger among boys (Table S3). Con-
versely, higher blood Pb was associated with a lower BMI 
[− 0.47 cm (95% CI − 0.72, − 0.21)] and waist circumference 
[− 1.29 cm (95% CI − 1.97, − 0.61)], as well as lower upper 
arm length [− 0.24 cm (95% CI − 0.36, − 0.11)] and standing 
height [− 0.70 cm (95% CI − 1.13, − 0.27)] (Table 2). The 
positive and negative associations between Mn and Pb con-
centrations with children’s anthropometry were each consist-
ent in our sex-stratified analyses. We noticed a borderline 
significant two-way interaction between Mn and Pb with 
BMI (p-value = 0.057) but attenuated with waist circumfer-
ence (p-value = 0.133). Further, we observed that an IQR 
difference in blood Hg concentration was associated with 
a 0.50 cm (95% CI − 0.97, − 0.02) lower standing height 

(Table 2), particularly among girls [− 0.67 (95% CI − 1.34, 
0.00)]. Also, among girls, a negative association was found 
between blood Hg and upper arm length but with wide con-
fidence intervals (Table S3). As in the BKMR analysis, we 
did not identify associations with other components of the 
mixture. Additionally, we performed regression models add-
ing metal quantile concentrations (categorical) as independ-
ent variable, and the results supported the linear associations 
previously described (Table S4).

Discussion

Our findings, based on a population of US children with 
a median age of 9  years participating in the NHANES 
2013–2016 cycles, suggest that exposure to a metal mix-
ture of F, Mn, Pb, Se, and Hg may influence child body 
size and growth depending on the exposure levels measured 
in blood. Plasma F, and whole blood Mn, Pb, Se, and Hg 
concentrations are considered an accurate/valid biomarker 
of exposure (Buckley et al. 2020), and the levels found in 
our population are comparable to other population-based 
studies (Bose-O’Reilly et al. 2010; Grandjean 2019; Henn 
et al. 2010; Hrubá et al. 2012; Kobayashi et al. 2019; Leite 
et al. 2015; Liu et al. 2014). We observed that Pb concen-
trations were related to lower BMI and waist circumference 
at higher concentrations of the other metals of the mixture 
with little evidence of nonlinearity. A negative association 
was also observed between blood Pb and children’s upper 
arm length and standing height, especially among boys. 

Table 2   Difference in the BMI, standing height, weight circumference and upper arm length for each IQR difference in metal concentration of 
6–11-year-old children from the 2013–2016 NHANES

Statistically significant results are highlighted in bold
a Based on linear models adjusted for total calorie intake (kcal, continuous), race (Mexican American, non-Hispanic white, non-Hispanic black or 
another race, categorical), poverty-to-income ratio (≤ 1.49 (the median) vs. > 1.49), children’s age (years, continuous), smoker/s in the household 
(yes vs. no), outside-of-school and at-school activity scores (continuous), and children’s sex (boys vs. girls). The models include all five metals 
(F, Pb, Mn, Hg, and Se)

Total sample (n = 1634)

BMI (kg/m2) Standing height (cm) Waist circumference (cm) Upper arm length (cm)

Multiple elements β 
(95% CI)a

 F 0.00 0.00 0.10 − 0.04
(− 0.24, 0.25) (− 0.42, 0.41) (− 0.56, 0.76) (− 0.16, 0.09)

 Pb − 0.47 − 0.70 − 1.29 − 0.24
(− 0.72, − 0.21) (− 1.13, − 0.27) (− 1.97, − 0.61) (− 0.36, − 0.11)

 Mn 0.88 0.70 2.46 0.20
(0.59, 1.18) (0.21, 1.19) (1.69, 3.25) (0.05, 0.35)

 Hg − 0.05 − 0.50 − 0.20 − 0.13
(− 0.33, 0.23) (− 0.97, − 0.02) (− 0.95, 0.55) (− 0.27, 0.01)

 Se − 0.17 − 0.20 − 0.31 − 0.07
(− 0.44, 0.09) (− 0.65, 0.25) (− 1.01, 0.40) (− 0.20, 0.06)
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Blood Mn, most likely reflecting its function as an essential 
nutrient, was related to higher BMI and waist circumfer-
ence at lower concentrations of the other metals, and the 
shape of the dose–response curve appeared to be linear. A 
positive association was also observed between Mn concen-
trations and upper arm length and standing height, espe-
cially among boys. Blood Hg concentrations were related 
to reduced standing height, and this association appeared 
stronger among girls.

Lead is a known toxic metal. Indeed, no levels of blood 
Pb are considered safe and childhood exposures have been 
associated with a broad spectrum of deleterious health 
effects (Burns et al. 2017). Thus, the CDC reduced the blood 
Pb reference value from 10 to 5 µg/dL in 2012 to minimize 
risks among vulnerable population groups. Yet, detectable 
levels of blood Pb among US children persist (Bellinger 
et al. 2017). In children, high blood Pb concentrations have 
been associated with lower osteocalcin, a biomarker of bone 
formation. Pb may interfere with bone cell function, metabo-
lism, and bone mineralization (Mushak et al. 1989; Pounds 
et al. 1991). For example, Pb may alter circulating levels of 
hormones required for bone development and maintenance 
(e.g., 1,25‑dihydroxyvitamin D3), as well as the ability of 
bone cells to respond to hormonal regulation, leading to 
impaired bone formation. Further, exposure to Pb may have 
endocrine-disrupting capabilities by reducing responses to 
hormones that are necessary for growth, such as insulin-like 
growth factor, and inhibiting the hypothalamic-pituitary-
growth axis (Berry et al. 2002; Burns et al. 2017; Deierlein 
et al. 2019; Fleisch et al. 2013).

Limited epidemiological evidence is available on the 
effects of low Pb exposure on child growth, particularly as 
a component of common real-life metal co-exposures. A 
prior study found that peripubertal blood Pb concentrations 
in a single measurement were associated with shorter height 
through age 18 years (Burns et al. 2017). Our study agrees 
with the prior findings and suggests an inverse association 
between blood Pb and standing height and upper arm length. 
In our BKMR models, there was little evidence that Pb inter-
acted with the other components of the metal mixture on 
these growth measures.

Associations of Pb exposure with indirect estimations 
of adiposity such as BMI or waist circumference are less 
commonly reported, and show null (Ballew et al. 1999; Min 
et al. 2008) and adverse effects (Burns et al. 2017; Cassidy-
Bushrow et al. 2016; Deierlein et al. 2019; Little et al. 2009; 
Schwartz et al. 1986; Scinicariello et al. 2013). Prior stud-
ies using NHANES 1976–1980 and 1999–2006 data found 
higher blood Pb associated with lower BMI (Scinicariello 
et al. 2013) and weight (Schwartz et al. 1986) in children. 
In contrast, a study using NHANES 1988–1994 data did not 
find associations between blood Pb and children’s weight 
or BMI (Ballew et al. 1999). In our analysis, a consistent 

inverse association was observed between Pb exposure 
and children’s BMI and waist circumference that appeared 
stronger at higher concentrations of the other metals of the 
mixture.

Children’s exposure to Mn is a public health concern that 
points to complexities in establishing exposure thresholds 
because of its dual role as an essential nutrient required to 
maintain health, while it is neurotoxic at high levels (Chung 
et al. 2015; Signes-Pastor et al. 2018). Evidence suggests 
that Mn follows a U-shaped dose–response curve on chil-
dren’s neurodevelopment (Henn et al. 2010) and birth size 
(Chen et al. 2014; Guan et al. 2014; Signes-Pastor et al. 
2019; Xia et al. 2016). However, optimal Mn levels have 
not been defined yet, and there are scant studies on Mn 
exposure and children’s body size and growth. In this study, 
we found a linear positive association with children’s body 
size, with evidence of antagonistic effects of Mn and Pb 
exposure on children’s BMI and waist circumference. Spe-
cifically, the positive association between BMI and waist 
circumference and blood Mn levels appeared stronger at a 
lower level of Pb and other mixture components. We found 
that upper arm length was higher with higher Mn levels, and 
higher standing height among boys. The Mn exposure levels 
assessed in our study population appeared to be beneficial 
for 6–11-year-old children’s growth.

Little is known about the effects of Hg exposure on physi-
cal growth. However, it has been suggested that in growing 
children a mild exposure to Hg associated with a fish-based 
diet consistent with health recommendations may overcome 
the known adverse risks of Hg exposure (Benefice et al. 
2008; Bose-O’Reilly et al. 2010; Gao et al. 2018; Strata-
kis et al. 2020). Ingestion of polyunsaturated fatty acids, 
essential fatty acids with important physiological active 
functions, are among the main nutritional advantages of a 
fish-based diet (Benefice et al. 2008; Stratakis et al. 2020). 
However, there is still controversy regarding the benefits or 
disadvantages of fish consumption (Mozaffarian and Rimm 
2006; Stratakis et al. 2020). A cross-sectional study from 
China reported a positive association between blood Hg 
and children’s anthropometry by comparing 0–6-year-old 
children from suburban and rural areas with median blood 
Hg concentrations of 1.34 µg/L and 1.09 µg/L, respectively 
(Gao et al. 2018). Contrary, we observed that standing height 
was 0.5 cm lower in children for each IQR difference in Hg 
concentrations and that upper arm length was about 0.1 cm 
lower, but the latter association did not reach statistical 
significance. The Hg effect estimates did not appear to be 
altered by the other components of the metal mixture. Never-
theless, these findings should be interpreted cautiously given 
the high proportion of Hg concentrations below the LOD 
(i.e., 39%). The median blood Hg in our study population 
was about fourfold lower compared to the levels reported 
in the study from China (Gao et al. 2018), which suggests 
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a low seafood consumption. Indeed, low fish and shellfish 
intake has been previously reported among US children of 
6–11 years from NHANES 2013–2016 cycles: only 5.8% 
reported seafood consumption at least twice per week (Terry 
et al. 2018). Thus, intake of fish and shellfish in our study 
population is not expected to affect anthropometric indica-
tors, and thus we did not adjust our core models for con-
sumption of marine products. Similarly, sensitivity analy-
sis adjusting linear regression models for marine products 
including fish and shellfish intake in the past 30 days showed 
consistent results (data not shown).

Selenium is an essential nutrient, and is a cofactor 
required by a number of enzymes with antioxidant func-
tions. Its deficiency may lead to modifications in cellular 
antioxidative capacity and the appearance of a number of 
diseases. Children are at particular risk for Se deficiency 
since their rapid growth includes a high demand for Se 
(Ortega et al. 2013). For instance, lower serum Se levels 
have been associated with excess weight and reduced height 
(Lander et al. 2015; Ortega et al. 2013), which supports the 
epidemiologic data that children need a small amount of Se 
for normal growth and development (Fábelová et al. 2018). 
However, our findings provide little evidence of an associa-
tion between blood Se and children’s anthropometric indica-
tors as no evidence of Se deficiency was observed from their 
Se blood concentrations. Evidence of Se interactions with 
the other components of the metal mixture is also limited.

Most of the literature on F exposure is focused on cogni-
tive effects, and suggests a dose–response dependent neu-
rotoxicity at high concentrations but also possibly at even 
levels below the currently accepted 0.7 mg/L in drinking 
water for preventive dentistry purposes in the US (Grand-
jean 2019). Nonetheless, a study from China investigated 
the effects of F exposure from drinking water on 6–12-year-
old children’s growth, and reported a decreased height 
among children highly exposed to F at 8.3 mg/L compared 
to those consuming water at a F level of 0.5 mg/L (Wang 
et al. 2007). Also, among adults, an increase in bone frac-
tures was associated with drinking water consumption that 
contained 4 mg/L of F [Institute of Medicine (U.S.) 1997]. 
There is also evidence that F is accumulated in bone and 
reduces calcium uptake at high F exposure levels, thereby 
influencing children’s growth and bone strength [Institute of 
Medicine (U.S.) 1997; Wang et al. 2007]. However, in our 
population of US school children with relatively low plasma 
F levels, we did not identify any associations between F and 
anthropometric measurements.

Drinking water is expected to play a major role in metal 
exposure for our study population in addition to diet and 
other environmental factors (Buckley et al. 2020; Signes-
Pastor et al. 2018). Several metals are naturally occurring in 
public drinking water sources and others are added for safety 
and health benefits (e.g., F to prevent cavities), migrated 

from water pipes (e.g., Pb) or related to industrial activi-
ties (Chowdhury et al. 2016; Grandjean 2019; Ljung et al. 
2011). Leafy vegetables, nuts, grains, and animal products 
are good sources of Mn and Se, while the consumption of 
certain seafood products is associated with ingestion of Hg 
(Lucchini et al. 2017; Navarro-Alarcon and Cabrera-Vique 
2008; Stratakis et al. 2020). Nevertheless, metal content in 
foodstuff can be exacerbated when grown in contaminated 
soils (Carbonell-Barrachina et al. 2009; Kachenko and Singh 
2006). Contact with chips and dust from toys and household 
Pb-based paint is of particular concern as a Pb exposure 
source among children (O’Connor et al. 2018; Shen et al. 
2018).

In interpreting our findings, it is important to consider 
some limitations. First is the cross-sectional nature of the 
data, where exposures and anthropometric indicators were 
measured at the same time point. Thus, we cannot draw con-
clusions regarding temporality of the relationship between 
metal exposure and children’s body size and growth; these 
associations will need to be replicated using prospective 
data with serial measurements in the future. Second, a single 
blood sample was used to assess metal exposure. Metal con-
centrations may fluctuate over time, and the use of a single 
blood sample to assess exposure is based on the assumption 
that the single measure represents usual exposure levels. 
Third, our study findings may not be generalizable beyond 
the age range of 6–11 years because children continue to 
grow until about 20 years of age, and different toxicants/
nutrients may have different critical exposure windows based 
on the outcomes of interest. In contrast, our study is among 
the first to flexibly model the association between both nutri-
ent and toxic metals co-exposure at levels relevant to the 
general population [e.g., median blood Pb was an order of 
magnitude lower than the reference value of 5 µg/dL (CDC 
2020)] on anthropometric indicators measured in a relatively 
sizeable sample of US children selected from two NHANES 
cycles. Our analysis takes advantage of the recently devel-
oped nonparametric statistical approach BKMR, which is 
designed to flexibly assess dose–response, interactions, and 
mixture effects. BKMR may be poorly suited for very high-
dimensional data; however, we only evaluated the exposure 
to a mixture of five metals (Lazarevic et al. 2019). Further-
more, our study explored potential variations by sex given 
differences in patterns of exposure, gastrointestinal absorp-
tion, and/or metabolism (Eriksson et al. 2010; Llop et al. 
2013).

In conclusion, our findings suggest that simultaneous 
exposure to metals may influence children’s body size and 
growth measurements, and that the effects of metals may 
differ depending on the exposure levels of other components 
in the metal mixture. Particularly, our main findings, based 
on a population of US school-age children, emphasize that 
further efforts are necessary to reduce Pb exposure from 
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drinking water and other potential sources while maintain-
ing healthy levels of essential nutrients such as Mn to foster 
growth during the vulnerable period of childhood.
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