21 research outputs found

    Pharmacokinetics, biodistribution, and biosafety of PEGylated gold nanoparticles in vivo

    Get PDF
    Despite the obvious advantages of gold nanoparticles for biomedical applications, controversial and incomplete toxicological data hamper their widespread use. Here, we present the results from an in vivo toxicity study using gold nanoparticles coated with polyethylene glycol (PEG-AuNPs). The pharmacokinetics and biodistribution of PEG-AuNPs were examined in the rat's liver, lung, spleen, and kidney after a single i.v. injection (0.7 mg/kg) at different time intervals. PEG-AuNPs had a relatively long blood circulation time and accumulated primarily in the liver and spleen, where they remained for up to 28 days after administration. Increased cytoplasmic vacuolation in hepatocytes 24 h and 7 days after PEG-AuNPs exposure and apoptotic-like cells in white splenic pulp 24 h after administration has been detected, however, 28 days post-exposure were no longer observed. In contrast, at this time point, we identified significant changes in lipid metabolism, altered levels of liver injury markers, and elevated monocyte count, but without marked biological relevance. In blood cells, no DNA damage was present in any of the studied time intervals, with the exception of DNA breakage transiently detected in primary kidney cells 4 h post-injection. Our results indicate that the tissue accumulation of PEG-AuNPs might result in late toxic effects

    Targeting of Deregulated Wnt/β-Catenin Signaling by PRI-724 and LGK974 Inhibitors in Germ Cell Tumor Cell Lines

    Get PDF
    The majority of patients with testicular germ cell tumors (GCTs) can be cured with cisplatin-based chemotherapy. However, for a subset of patients present with cisplatin-refractory disease, which confers a poor prognosis, the treatment options are limited. Novel therapies are therefore urgently needed to improve outcomes in this challenging patient population. It has previously been shown that Wnt/β-catenin signaling is active in GCTs suggesting that its inhibitors LGK974 and PRI-724 may show promise in the management of cisplatin-refractory GCTs. We herein investigated whether LGK-974 and PRI-724 provide a treatment effect in cisplatin-resistant GCT cell lines. Taking a genoproteomic approach and utilizing xenograft models we found the increased level of β-catenin in 2 of 4 cisplatin-resistant (CisR) cell lines (TCam-2 CisR and NCCIT CisR) and the decreased level of β-catenin and cyclin D1 in cisplatin-resistant NTERA-2 CisR cell line. While the effect of treatment with LGK974 was limited or none, the NTERA-2 CisR exhibited the increased sensitivity to PRI-724 in comparison with parental cell line. Furthermore, the pro-apoptotic effect of PRI-724 was documented in all cell lines. Our data strongly suggests that a Wnt/β-catenin signaling is altered in cisplatin-resistant GCT cell lines and the inhibition with PRI-724 is effective in NTERA-2 CisR cells. Further evaluation of Wnt/β-catenin pathway inhibition in GCTs is therefore warranted

    Sex difference and intra-operative tidal volume: Insights from the LAS VEGAS study

    Get PDF
    BACKGROUND: One key element of lung-protective ventilation is the use of a low tidal volume (VT). A sex difference in use of low tidal volume ventilation (LTVV) has been described in critically ill ICU patients.OBJECTIVES: The aim of this study was to determine whether a sex difference in use of LTVV also exists in operating room patients, and if present what factors drive this difference.DESIGN, PATIENTS AND SETTING: This is a posthoc analysis of LAS VEGAS, a 1-week worldwide observational study in adults requiring intra-operative ventilation during general anaesthesia for surgery in 146 hospitals in 29 countries.MAIN OUTCOME MEASURES: Women and men were compared with respect to use of LTVV, defined as VT of 8 ml kg-1 or less predicted bodyweight (PBW). A VT was deemed 'default' if the set VT was a round number. A mediation analysis assessed which factors may explain the sex difference in use of LTVV during intra-operative ventilation.RESULTS: This analysis includes 9864 patients, of whom 5425 (55%) were women. A default VT was often set, both in women and men; mode VT was 500 ml. Median [IQR] VT was higher in women than in men (8.6 [7.7 to 9.6] vs. 7.6 [6.8 to 8.4] ml kg-1 PBW, P < 0.001). Compared with men, women were twice as likely not to receive LTVV [68.8 vs. 36.0%; relative risk ratio 2.1 (95% CI 1.9 to 2.1), P < 0.001]. In the mediation analysis, patients' height and actual body weight (ABW) explained 81 and 18% of the sex difference in use of LTVV, respectively; it was not explained by the use of a default VT.CONCLUSION: In this worldwide cohort of patients receiving intra-operative ventilation during general anaesthesia for surgery, women received a higher VT than men during intra-operative ventilation. The risk for a female not to receive LTVV during surgery was double that of males. Height and ABW were the two mediators of the sex difference in use of LTVV.TRIAL REGISTRATION: The study was registered at Clinicaltrials.gov, NCT01601223

    Role of the 3-mercaptopyruvate sulfurtransferase in colon/colorectal cancers

    No full text
    The 3-mercaptopyruvate sulfurtransferase (MPST) is a protein persulfidase, occurring mainly in mitochondria. Although function of this protein in cancer cells has been already studied, no clear outcome can be postulated up to now. Therefore, we focused on the determination of function of MPST in colon (HCT116 cells)/colorectal (DLD1 cells) cancers. In silico analysis revealed that in gastrointestinal cancers, MPST together with its binding partners can be either of a high risk or might have a protective effect. Silencing of MPST gene resulted in decreased ATP, while acetyl-CoA levels were elevated. Increased apoptosis was detected in cells with silenced MPST gene, which was accompanied by decrease in mitochondrial membrane potential, but no changes in IP3 receptor’s protein. Mitochondria underwent activation of fission and elevated DRP1 expression after MPST silencing. Proliferation and migration of DLD1 and HCT116 cells were markedly affected, showing the importance of MPST protein in colon/colorectal cancer development

    Taxifolin Reduces Blood Pressure via Improvement of Vascular Function and Mitigating the Vascular Inflammatory Response in Spontaneously Hypertensive Rats

    No full text
    The effect of a 10-day-long treatment with taxifolin (TAX, 20 mg/kg/day p.o.) was investigated on spontaneously hypertensive rats (SHRs) with a focus on the vascular functions of isolated femoral arteries and thoracic aortas. TAX reduced blood pressure in SHRs. In femoral arteries, TAX increased acetylcholine-induced relaxation, reduced the maximal NA-induced contraction, and reduced acetylcholine-induced endothelium-dependent contraction (EDC); however, TAX had no effect on the vascular reactivity of isolated thoracic aortas. In addition, TAX elevated the total nitric oxide synthase (NOS) activity and iNOS protein expression but reduced cyclooxygenase-2 (COX2) protein expression in the tissue of the abdominal aorta without changes in Nos2 and Ptgs2 gene expressions. TAX also increased the gene expression of the anti-inflammatory interleukin-10 (Il10). In addition, in vitro studies showed that TAX has both electron donor and H atom donor properties. However, TAX failed to reduce superoxide production in the tissue of the abdominal aorta after oral administration. In conclusion, our results show that a decrease in the blood pressure in TAX-treated SHRs might be attributed to improved endothelium-dependent relaxation and reduced endothelium-dependent contraction. In addition, the results suggest that the effect of TAX on blood pressure regulation also involves the attenuation of COX2-mediated pro-inflammation and elevation of anti-inflammatory pathways

    Prognostic Value of Apoptosis-Inducing Factor (AIF) in Germ Cell Tumors

    No full text
    Apoptosis is a strictly regulated process essential for preservation of tissue homeostasis. This study aimed to evaluate expression of apoptosis inducing factor (AIF) in testicular germ cell tumors (GCTs) and to correlate expression patterns with clinicopathological variables. Formalin-fixed and paraffin-embedded specimens of non-neoplastic testicular tissue and GCTs obtained from 216 patients were included in the study. AIF expression was detected by immunohistochemistry, scored by the multiplicative quickscore method (QS). Normal testicular tissue exhibits higher cytoplasmic granular expression of AIF compared to GCTs (mean QS = 12.77 vs. 4.80, p p = 0.048). We observed significantly lower AIF expression in GCTs compared to normal testicular tissue, which is an uncommon finding in malignant tumors. AIF downregulation might represent one of the mechanisms of inhibition of apoptosis and promotion of cell survival in GCTs

    Slow Sulfide Donor GYY4137 Increased the Sensitivity of Two Breast Cancer Cell Lines to Paclitaxel by Different Mechanisms

    No full text
    Paclitaxel (PTX) is a chemotherapeutic agent affecting microtubule polymerization. The efficacy of PTX depends on the type of tumor, and its improvement would be beneficial in patients’ treatment. Therefore, we tested the effect of slow sulfide donor GYY4137 on paclitaxel sensitivity in two different breast cancer cell lines, MDA-MB-231, derived from a triple negative cell line, and JIMT1, which overexpresses HER2 and is resistant to trastuzumab. In JIMT1 and MDA-MB-231 cells, we compared IC50 and some metabolic (apoptosis induction, lactate/pyruvate conversion, production of reactive oxygen species, etc.), morphologic (changes in cytoskeleton), and functional (migration, angiogenesis) parameters for PTX and PTX/GYY4137, aiming to determine the mechanism of the sensitization of PTX. We observed improved sensitivity to paclitaxel in the presence of GYY4137 in both cell lines, but also some differences in apoptosis induction and pyruvate/lactate conversion between these cells. In MDA-MB-231 cells, GYY4137 increased apoptosis without affecting the IP3R1 protein, changing the morphology of the cytoskeleton. A mechanism of PTX sensitization by GYY4137 in JIMT1 cells is distinct from MDA-MB-231, and remains to be further elucidated. We suggest different mechanisms of action for H2S on the paclitaxel treatment of MDA-MB-231 and JIMT1 breast cancer cell lines

    Gold and titania nanoparticles accumulated in the body induce late toxic effects and alterations in transcriptional and miRNA landscape

    Get PDF
    The growing production of nanomaterials and their presence in consumer products raises fear about their impact on human health and the environment. Of particular concern are those nanomaterials that exhibit poor excretion and tend to accumulate in living organisms. Our study investigated the potential adverse biological effects of residual gold and titania nanoparticles (PEG-AuNPs and TiONPs) 28 days after a single intravenous administration in rats. To comprehensively assess the potential health hazard of these metal nanoparticles (MNP), toxicological and transcriptomic analyses were employed. The liver was the primary organ of the MNP deposition, causing a reduction in the relative liver weight compared to unexposed animals. Concurrently, changes in serum biomarkers indicative of hepatic dysfunction and hematological and immunological alternations were determined. Integrated transcriptomic analysis unveiled exposure-induced effects on the rats' lungs, liver, and kidneys. The hepatic tissue, particularly in PEG-AuNPs-exposed rats, exhibited a noteworthy prevalence of deregulated genes, with functional classification spanning lipid metabolism, cell cycle, and cell proliferation pathways. Although the number of deregulated miRNAs was relatively modest compared to mRNA expression changes, both types of MNPs deregulated miR-203a, associated with liver injury, and miR-18a-5p and miR-32-5p linked to kidney damage. This study underscores the imperative for a more exhaustive biosafety assessment of poorly soluble MNPs that tend to deposit in the body. Such investigations are crucial for delineating the potential risks of these nanomaterials and guiding the development of adequate safety measures in their production and usage

    Vascular Effects of Low-Dose ACE2 Inhibitor MLN-4760—Benefit or Detriment in Essential Hypertension?

    No full text
    Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infects host cells through angiotensin-converting enzyme 2 (ACE2). Concurrently, the product of ACE2 action, angiotensin 1–7 (Ang 1–7), binds to Mas receptors within the cardiovascular system and provides protective effects. Therefore, it is crucial to reveal the role of ACE2 inhibition, especially within pre-existing cardiovascular pathologies. In our study, we imitated the action of SARS-CoV-2 in organisms using the low dose of the ACE2 inhibitor MLN-4760 with the aim of investigating to what degree ACE2 inhibition is detrimental to the cardiovascular system of spontaneously hypertensive rats (SHRs), which represent a model of human essential hypertension. Our study revealed the complex action of MLN-4760 in SHRs. On the one hand, we found that MLN-4760 had (1) (pro)obesogenic effects that negatively correlated with alternative renin-angiotensin system activity and Ang 1–7 in plasma, (2) negative effects on ACE1 inhibitor (captopril) action, (3) detrimental effects on the small arteries function and (4) anti-angiogenic effect in the model of chick chorioallantoic membrane. On the other hand, MLN-4760 induced compensatory mechanisms involving strengthened Mas receptor-, nitric oxide- and hydrogen sulfide-mediated signal transduction in the aorta, which was associated with unchanged blood pressure, suggesting beneficial action of MLN-4760 when administered at a low dose

    Immunotoxicity and genotoxicity testing of PLGA-PEO nanoparticles in human blood cell model

    No full text
    A human blood cell model for immunotoxicity and genotoxicity testing was used to measure the response to polylactic-co-glycolic acid (PLGA-PEO) nanoparticle (NP) (0.12, 3, 15 and 75 μg/cm<sup>2</sup> exposure in fresh peripheral whole blood cultures/isolated peripheral blood mononuclear cell cultures from human volunteers (n = 9-13). PLGA-PEO NPs were not toxic up to dose 3 μg/cm<sup>2</sup>; dose of 75 μg/cm<sup>2</sup> displays significant decrease in [<sup>3</sup>H]-thymidine incorporation into DNA of proliferating cells after 4 h (70% of control) and 48 h (84%) exposure to NPs. In non-cytotoxic concentrations, in vitro assessment of the immunotoxic effects displayed moderate but significant suppression of proliferative activity of T-lymphocytes and T-dependent B-cell response in cultures stimulated with PWM > CON A, and no changes in PHA cultures. Decrease in proliferative function was the most significant in T-cells stimulated with CD3 antigen (up to 84%). Cytotoxicity of natural killer cells was suppressed moderately (92%) but significantly in middle-dosed cultures (4 h exposure). On the other hand, in low PLGA-PEO NPs dosed cultures, significant stimulation of phagocytic activity of granulocytes (119%) > monocytes (117%) and respiratory burst of phagocytes (122%) was recorded. Genotoxicity assessment revealed no increase in the number of micronucleated binucleated cells and no induction of SBs or oxidised DNA bases in PLGA-PEO-treated cells. To conclude on immuno- and genotoxicity of PLGA-PEO NPs, more experiments with various particle size, charge and composition need to be done
    corecore