5,164 research outputs found

    Temporal and Spectral Variabilities of High Energy Emission from Blazars Using Synchrotron Self-Compton Models

    Full text link
    Multiwavelength observations of blazars such as Mrk 421 and Mrk 501 show that they exhibit strong short time variabilities in flare-like phenomena. Based on the homogeneous synchrotron self-Compton (SSC) model and assuming that time variability of the emission is initiated by changes in the injection of nonthermal electrons, we perform detailed temporal and spectral studies of a purely cooling plasma system. One important parameter is the total injected energy E and we show how the synchrotron and Compton components respond as E varies. We discuss in detail how one could infer important physical parameters using the observed spectra. In particular, we could infer the size of the emission region by looking for exponential decay in the light curves. We could also test the basic assumption of SSC by measuring the difference in the rate of peak energy changes of synchrotron and SSC peaks. We also show that the trajectory in the photon-index and flux plane evolves clockwise or counter-clockwise depending on the value of E and observed energy bands.Comment: 35 pages, 18 figures, accepted by the Astrophysical Journa

    Coulomb blockade of tunnelling through compressible rings formed around an antidot: an explanation for h/2eh/2e Aharonov-Bohm oscillations

    Full text link
    We consider single-electron tunnelling through antidot states using a Coulomb-blockade model, and give an explanation for h/2e Aharonov-Bohm oscillations, which are observed experimentally when the two spins of the lowest Landau level form bound states. We show that the edge channels may contain compressible regions, and using simple electrostatics, that the resonance through the outer spin states should occur twice per h/e period. An antidot may be a powerful tool for investigating quantum Hall edge states in general, and the interplay of spin and charging effects that occurs in quantum dots.Comment: 5 pages, 4 Postscript figure

    ALMA polarimetric studies of rotating jet/disk systems

    Get PDF
    We have recently obtained polarimetric data at mm wavelengths with ALMA for the young systems DG Tau and CW Tau, for which the rotation properties of jet and disk have been investigated in previous high angular resolution studies. The motivation was to test the models of magneto-centrifugal launch of jets via the determination of the magnetic configuration at the disk surface. The analysis of these data, however, reveals that self-scattering of dust thermal radiation dominates the polarization pattern. It is shown that even if no information on the magnetic field can be derived in this case, the polarization data are a powerful tool for the diagnostics of the properties and the evolution of dust in protoplanetary disks.Comment: 9 pages, 3 figures, to appear in "Jet Simulations, Experiments and Theory. Ten years after JETSET, what is next ?", C. Sauty ed., Springer Natur

    Surface-acoustic-wave-driven luminescence from a lateral p-n junction

    Full text link
    The authors report surface-acoustic-wave-driven luminescence from a lateral p-n junction formed by molecular beam epitaxy regrowth of a modulation doped GaAs/AlGaAs quantum well on a patterned GaAs substrate. Surface-acoustic-wave-driven transport is demonstrated by peaks in the electrical current and light emission from the GaAs quantum well at the resonant frequency of the transducer. This type of junction offers high carrier mobility and scalability. The demonstration of surface-acoustic-wave luminescence is a significant step towards single-photon applications in quantum computation and quantum cryptography.Comment: 4 pages, 3 figure

    Stabilization of single-electron pumps by high magnetic fields

    Full text link
    We study the effect of perpendicular magnetic fields on a single-electron system with a strongly time-dependent electrostatic potential. Continuous improvements to the current quantization in these electron pumps are revealed by high-resolution measurements. Simulations show that the sensitivity of tunnel rates to the barrier potential is enhanced, stabilizing particular charge states. Nonadiabatic excitations are also suppressed due to a reduced sensitivity of the Fock-Darwin states to electrostatic potential. The combination of these effects leads to significantly more accurate current quantization

    Kiloparsec-Scale Jets in FR I Radio Galaxies and the Gamma-Ray Background

    Full text link
    We discuss the contribution of kiloparsec-scale jets in FR I radio galaxies to the diffuse gamma-ray background radiation. The analyzed gamma-ray emission comes from inverse-Compton scattering of starlight photon fields by the ultrarelativistic electrons whose synchrotron radiation is detected from such sources at radio, optical and X-ray energies. We find that these objects, under the minimum-power hypothesis (corresponding to a magnetic field of 300 muG in the brightest knots of these jets), can contribute about one percent to the extragalactic gamma-ray background measured by EGRET. We point out that this result already indicates that the magnetic fields in kpc-scale jets of low-power radio galaxies are not likely to be smaller than 10 muG on average, as otherwise the extragalactic gamma-ray background would be overproduced.Comment: 18 pages, 3 figures included. ApJ accepte

    Templeting of Thin Films Induced by Dewetting on Patterned Surfaces

    Full text link
    The instability, dynamics and morphological transitions of patterns in thin liquid films on periodic striped surfaces (consisting of alternating less and more wettable stripes) are investigated based on 3-D nonlinear simulations that account for the inter-site hydrodynamic and surface-energetic interactions. The film breakup is suppressed on some potentially destabilizing nonwettable sites when their spacing is below a characteristic lengthscale of the instability, the upper bound for which is close to the spinodal lengthscale. The thin film pattern replicates the substrate surface energy pattern closely only when, (a) the periodicity of substrate pattern matches closely with the characteristic lengthscale, and (b) the stripe-width is within a range bounded by a lower critical length, below which no heterogeneous rupture occurs, and an upper transition length above which complex morphological features bearing little resemblance to the substrate pattern are formed.Comment: 5 pages TeX (REVTeX 4), other comments: submitted to Phys. Rev.Let

    Chandra Discovery of an X-ray Jet and Lobes in 3C 15

    Full text link
    We report the Chandra detection of an X-ray jet in 3C 15. The peak of the X-ray emission in the jet is 4.1'' (a projected distance of 5.1 kpc) from the nucleus, and coincident with a component previously identified in the radio and optical jets. We examine four models for the X-ray jet emission: (I) weak synchrotron cooling in equip., (II) moderate synchrotron cooling in equip., (III) weak synchrotron plus SSC cooling, and (IV) moderate synchrotron plus SSC cooling. We argue that case (II) can most reasonably explain the overall emission from knot C. Case (III) is also possible, but requires a large departure from equipartition and for the jet power to be comparable to that of the brightest quasars. Diffuse X-ray emission has also been detected, distributed widely over the full extent (63kpc x 25kpc) of the radio lobes. We compare the total energy contained in the lobes with the jet power estimated from knot C, and discuss the energetic link between the jet and the lobes. We argue that the fueling time (t_fuel) and the source age (t_src) are comparable for case (II), whereas t_fuel << t_src is likely for case (III). The latter may imply that the jet has a very small filling factor, ~10^{-3}. We consider the pressure balance between the thermal galaxy halo and non-thermal relativistic electrons in the radio lobes. Finally, we show that the X-ray emission from the nucleus is not adequately fitted by a simple absorbed power-law model, but needs an additional power-law with heavy absorption intrinsic to the source. Such a high column density is consistent with the presence of a dense, dusty torus which obscures the quasar nucleus.Comment: 14 pages, 8 figures, accepted for publication in A&
    corecore