27 research outputs found

    Plastic, nutrition and pollution; relationships between ingested plastic and metal concentrations in the livers of two Pachyptila seabirds

    Get PDF
    Naturally occurring metals and metalloids [metal(loid)s] are essential for the physiological functioning of wildlife; however, environmental contamination by metal(loid) and plastic pollutants is a health hazard. Metal(loid)s may interact with plastic in the environment and there is mixed evidence about whether plastic ingested by wildlife affects metal(loid) absorption/assimilation and concentration in the body. We examined ingested plastic and liver concentration of eleven metal(loid)s in two seabird species: fairy (Pachyptila turtur) and slender-billed prions (P. belcheri). We found significant relationships between ingested plastic and the concentrations of aluminium (Al), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu) and zinc (Zn) in the liver of prions. We investigated whether the pattern of significant relationships reflected plastic-metal(loid) associations predicted in the scientific literature, including by transfer of metals from ingested plastics or malnutrition due to dietary dilution by plastics in the gut. We found some support for both associations, suggesting that ingested plastic may be connected with dietary dilution / lack of essential nutrients, especially iron, and potential transfer of zinc. We did not find a relationship between plastic and non-essential metal(loid)s, including lead. The effect of plastic was minor compared to that of dietary exposure to metal(oid)s, and small plastic loads

    Genomic organization and alternative splicing of the human and mouse RPTPρ genes

    Get PDF
    BACKGROUND: Receptor protein tyrosine phosphatase rho (RPTPρ, gene symbol PTPRT) is a member of the type IIB RPTP family. These transmembrane molecules have been linked to signal transduction, cell adhesion and neurite extension. The extracellular segment contains MAM, Ig-like and fibronectin type III domains, and the intracellular segment contains two phosphatase domains. The human RPTPρ gene is located on chromosome 20q12-13.1, and the mouse gene is located on a syntenic region of chromosome 2. RPTPρ expression is restricted to the central nervous system. RESULTS: The cloning of the mouse cDNA, identification of alternatively spliced exons, detection of an 8 kb 3'-UTR, and the genomic organization of human and mouse RPTPρ genes are described. The two genes are comprised of at least 33 exons. Both RPTPρ genes span over 1 Mbp and are the largest RPTP genes characterized. Exons encoding the extracellular segment through the intracellular juxtamembrane 'wedge' region are widely spaced, with introns ranging from 9.7 to 303.7 kb. In contrast, exons encoding the two phosphatase domains are more tightly clustered, with 15 exons spanning ∼ 60 kb, and introns ranging in size from 0.6 kb to 13.1 kb. Phase 0 introns predominate in the intracellular, and phase 1 in the extracellular segment. CONCLUSIONS: We report the first genomic characterization of a RPTP type IIB gene. Alternatively spliced variants may result in different RPTPρ isoforms. Our findings suggest that RPTPρ extracellular and intracellular segments originated as separate modular proteins that fused into a single transmembrane molecule during a later evolutionary period

    Surgical correction of astigmatism

    No full text

    Exploring the potential for top-dressing bread wheat with ammonium chloride to minimize grain yield losses under drought

    Get PDF
    The frequency and severity of drought is predicted to rise in many parts of the world. Considering that drought is the main constraint on rain-fed wheat crop production, both agronomic and genetic measures have been taken to minimize yield losses under drought. Beyond its role as a micronutrient, chloride also acts as an osmoticum, implicated in the regulation of stomatal aperture. This study explores the potential for chloride fertilization of Australian bread wheat (Triticum aestivum L.) to minimize grain yield losses caused by drought stress. For this, two drought-tolerant commercial genotypes (Mace and Gladius) and a well-studied drought-tolerant genotype used in wheat breeding (RAC875) were treated with ammonium chloride, potassium chloride, or ammonium bicarbonate, the latter two treatments served as controls for chloride and ammonium, respectively. Plants were grown under either a watered or water-restricted (drought) regime. The genotype RAC875 was found to accumulate leaf chloride at a significantly higher level than the other genotypes under optimal growth conditions. Under drought conditions, top-dressing RAC875 plants with ammonium chloride resulted in up to a 2.5-fold increase in grain number and this effect was not seen when plants were top-dressed with either of the control fertilizers. The ammonium chloride treatment also minimized losses of grain yield in RAC875 plants grown under drought. Treatment effects were accompanied by an increase in stomatal conductance. These results collectively suggest that the compound fertilizer ammonium chloride can improve drought tolerance of wheat.Farzana Kastury, Vahid Rahimi Eichi, Akiko Enju, Mamoru Okamoto, Sigrid Heuer and Vanessa Melin

    Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2).

    No full text
    Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding "adapter" proteins, which are involved in transducing signals from receptor tyrosine kinases to downstream signal recipients such as ras, because adaptor protein genes could also, logically, serve as targets of mutation, rearrangement, or other aberration in disease. Therefore, DNAs from panels of rodent-human hybrids carrying defined complements of human chromosomes were assayed for the presence of the cognate genes for NCK, SHC, and GRB2, three SH2 or SH2/SH3 (Src homology 2 and 3) domain-containing adapter proteins. Additionally, NCK and SHC genes were more narrowly localized by chromosomal in situ hybridization. The NCK locus is at chromosome region 3q21, a region involved in neoplasia-associated changes; the SHC cognate locus, SHC1, is at 1q21, and the GRB2 locus is at 17q22-qter telomeric to the HOXB and NGFR loci. Both SHC1 and GRB2 are in chromosome regions that may be duplicated in some tumor types
    corecore