36 research outputs found
Cell type-specific differences in β-glucan recognition and signalling in porcine innate immune cells
β-glucans exert receptor-mediated immunomodulating activities, including oxidative burst activity and cytokine secretion. The role of the β-glucan receptors dectin-1 and complement receptor 3 (CR3) in the response of immune cells towards β-glucans is still unresolved. Dectin-1 is considered as the main β-glucan receptor in mice, while recent studies in man show that CR3 is more important in β-glucan-mediated responses. This incited us to elucidate which receptor contributes to the response of innate immune cells towards particulate β-glucans in pigs as the latter might serve as a better model for man. Our results show an important role of CR3 in β-glucan recognition, as blocking this receptor strongly reduced the phagocytosis of β-glucans and the β-glucan-induced ROS production by porcine neutrophils. Conversely, dectin-1 does not seem to play a major role in β-glucan recognition in neutrophils. However, recognition of β-glucans appeared cell type-specific as both dectin-1 and CR3 are involved in the β-glucan-mediated responses in pig macrophages. Moreover, CR3 signalling through focal adhesion kinase (FAK) was indispensable for β-glucan-mediated ROS production and cytokine (TNFα, IL-1β, IL-8) production in neutrophils and macrophages, while the Syk-dependent pathway was only partly involved in these responses. We may conclude that as for man, CR3 plays a cardinal role in β-glucan signalling in porcine neutrophils, while macrophages use a more diverse receptor array to detect and respond towards β-glucans. Nonetheless, FAK acts as a master switch that regulates β-glucan-mediated responses in neutrophils as well as macrophages
Recommended from our members
Small-Molecule Screen Identifies Reactive Oxygen Species as Key Regulators of Neutrophil Chemotaxis
Neutrophil chemotaxis plays an essential role in innate immunity, but the underlying cellular mechanism is still not fully characterized. Here, using a small-molecule functional screening, we identified NADPH oxidase–dependent reactive oxygen species as key regulators of neutrophil chemotactic migration. Neutrophils with pharmacologically inhibited oxidase, or isolated from chronic granulomatous disease (CGD) patients and mice, formed more frequent multiple pseudopodia and lost their directionality as they migrated up a chemoattractant concentration gradient. Knocking down NADPH oxidase in differentiated neutrophil-like HL60 cells also led to defective chemotaxis. Consistent with the in vitro results, adoptively transferred CGD murine neutrophils showed impaired in vivo recruitment to sites of inflammation. Together, these results present a physiological role for reactive oxygen species in regulating neutrophil functions and shed light on the pathogenesis of CGD
Resistance of Trichoplusia ni to Bacillus thuringiensis Toxin Cry1Ac Is Independent of Alteration of the Cadherin-Like Receptor for Cry Toxins
Alteration of binding sites for Bacillus thuringiensis (Bt) toxins in insect midgut is the major mechanism of high-level resistance to Bt toxins in insects. The midgut cadherin is known to be a major binding protein for Bt Cry1A toxins and linkage of Bt-resistance to cadherin gene mutations has been identified in lepidopterans. The resistance to Bt toxin Cry1Ac evolved in greenhouse populations of Trichoplusia ni has been identified to be associated with the down-regulation of an aminopeptidase N (APN1) gene by a trans-regulatory mechanism and the resistance gene has been mapped to the locus of an ABC transporter (ABCC2) gene. However, whether cadherin is also involved with Cry1Ac-resistance in T. ni requires to be understood. Here we report that the Cry1Ac-resistance in T. ni is independent of alteration of the cadherin. The T. ni cadherin cDNA was cloned and the cadherin sequence showed characteristic features known to cadherins from Lepidoptera. Various T. ni cadherin gene alleles were identified and genetic linkage analysis of the cadherin alleles with Cry1Ac-resistance showed no association of the cadherin gene with the Cry1Ac-resistance in T. ni. Analysis of cadherin transcripts showed no quantitative difference between the susceptible and Cry1Ac-resistant T. ni larvae. Quantitative proteomic analysis of midgut BBMV proteins by iTRAQ-2D-LC-MS/MS determined that there was no quantitative difference in cadherin content between the susceptible and the resistant larvae and the cadherin only accounted for 0.0014% (mol%) of the midgut BBMV proteins, which is 1/300 of APN1 in molar ratio. The cadherin from both the susceptible and resistant larvae showed as a 200-kDa Cry1Ac-binding protein by toxin overlay binding analysis, and nano-LC-MS/MS analysis of the 200-kDa cadherin determined that there is no quantitative difference between the susceptible and resistant larvae. Results from this study indicate that the Cry1Ac-resistance in T. ni is independent of cadherin alteration
音声セキュリティのための特異スペクトル分析に基づいたCNNベースパラメータ推定を有する聴覚情報ハイディング
Supervisor: 鵜木 祐史先端科学技術研究科博士identifier:https://dspace.jaist.ac.jp/dspace/handle/10119/1752
Beneficial Effects of Indigenous Probiotics in High-Cholesterol Diet-Induced Hypercholesterolemic Rats
Hypercholesterolemia is a significant risk factor for cardiovascular disease and metabolic disorders. Probiotics are the essential constituents of the gastrointestinal microbiota that provide health-promoting effects. Cholesterol-lowering activity is a specific property of probiotics, improving the cholesterol metabolism without adverse effects. Thus, the purpose of this study was to investigate the hypocholesterolemic effect of single and mixed cholesterol-lowering probiotic strains (including Limosilactobacillus reuteri TF-7, Enterococcus faecium TF-18, and Bifidobacterium animalis TA-1) in high-cholesterol diet (HCD)-induced hypercholesterolemic rats. The results showed that the administration of single probiotics contributed to a reduction in the body weight gain, visceral organ indexes, hyperlipidemia, and hepatic steatosis and also an improvement in the gastrointestinal microbiota. Besides the effect of single cholesterol-lowering probiotics, three probiotics strains could also synergize their hypocholesterolemic effect when administered simultaneously. These findings indicate that three cholesterol-lowering probiotic strains are suitable for development as probiotic supplements to reduce the risk of diseases caused by cholesterol and exert health benefits with synergistic effect when administered simultaneously
Cadherin allele frequencies in F<sub>2</sub> progenies from four single-pair cross families.
1<p>Statistical significance was analyzed by Chi-square test with the predicted ratios of <i>cad<sup>C</sup>cad<sup>C</sup></i> : <i>cad<sup>C</sup>cad<sup>G</sup></i> : <i>cad<sup>G</sup>cad<sup>G</sup></i> = 1∶2∶1 in the tested individuals of each treatment.</p
Relative levels of cadherin mRNA, normalized to the ß-actin mRNA, in the midgut of the susceptible and Cry1Ac resistant larvae determined by real-time RT-PCR analysis.
<p>Error bars indicate standard errors of the means from analysis of 3 individuals.</p