21 research outputs found

    DGAT1 is a lipid metabolism oncoprotein that enables cancer cells to accumulate fatty acid while avoiding lipotoxicity [preprint]

    Get PDF
    Dysregulated cellular metabolism is a hallmark of cancer. As yet, few druggable oncoproteins directly responsible for this hallmark have been identified. Increased fatty acid acquisition allows cancer cells to meet their membrane biogenesis, ATP, and signaling needs. Excess fatty acids suppress growth factor signaling and cause oxidative stress in non-transformed cells, but surprisingly not in cancer cells. Molecules underlying this cancer adaptation may provide new drug targets. Here, we identify Diacylglycerol O-acyltransferase 1 (DGAT1), an enzyme integral to triacylglyceride synthesis and lipid droplet formation, as a frequently up-regulated oncoprotein allowing cancer cells to tolerate excess fatty acids. DGAT1 over-expression alone induced melanoma in zebrafish melanocytes, and co-operated with oncogenic BRAF or NRAS for more rapid melanoma formation. Mechanistically, DGAT1 stimulated melanoma cell growth through sustaining mTOR kinase–S6 kinase signaling and suppressed cell death by tempering fatty acid oxidation, thereby preventing accumulation of reactive oxygen species including lipid peroxides

    Single-Cell Transcriptional Analysis of Normal, Aberrant, and Malignant Hematopoiesis in Zebrafish

    Get PDF
    Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4+ cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2E450fs mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4+ cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2E450fs mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4+/CD8+ cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb. In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia

    Nano-Sampling and Reporter Tools to Study Metabolic Regulation in Zebrafish

    Get PDF
    In the past years, evidence has emerged that hallmarks of human metabolic disorders can be recapitulated in zebrafish using genetic, pharmacological or dietary interventions. An advantage of modeling metabolic diseases in zebrafish compared to other “lower organisms” is the presence of a vertebrate body plan providing the possibility to study the tissue-intrinsic processes preceding the loss of metabolic homeostasis. While the small size of zebrafish is advantageous in many aspects, it also has shortcomings such as the difficulty to obtain sufficient amounts for biochemical analyses in response to metabolic challenges. A workshop at the European Zebrafish Principal Investigator meeting in Trento, Italy, was dedicated to discuss the advantages and disadvantages of zebrafish to study metabolic disorders. This perspective article by the participants highlights strategies to achieve improved tissue-resolution for read-outs using “nano-sampling” approaches for metabolomics as well as live imaging of zebrafish expressing fluorescent reporter tools that inform on cellular or subcellular metabolic processes. We provide several examples, including the use of reporter tools to study the heterogeneity of pancreatic beta-cells within their tissue environment. While limitations exist, we believe that with the advent of new technologies and more labs developing methods that can be applied to minimal amounts of tissue or single cells, zebrafish will further increase their utility to study energy metabolism

    Poised Regeneration of Zebrafish Melanocytes Involves Direct Differentiation and Concurrent Replenishment of Tissue-Resident Progenitor Cells

    Get PDF
    SummaryEfficient regeneration following injury is critical for maintaining tissue function and enabling organismal survival. Cells reconstituting damaged tissue are often generated from resident stem or progenitor cells or from cells that have dedifferentiated and become proliferative. While lineage-tracing studies have defined cellular sources of regeneration in many tissues, the process by which these cells execute the regenerative process is largely obscure. Here, we have identified tissue-resident progenitor cells that mediate regeneration of zebrafish stripe melanocytes and defined how these cells reconstitute pigmentation. Nearly all regeneration melanocytes arise through direct differentiation of progenitor cells. Wnt signaling is activated prior to differentiation, and inhibition of Wnt signaling impairs regeneration. Additional progenitors divide symmetrically to sustain the pool of progenitor cells. Combining direct differentiation with symmetric progenitor divisions may serve as a means to rapidly repair injured tissue while preserving the capacity to regenerate

    A novel approach to community CPR and AED outreach focused on underserved learner communities

    No full text
    Abstract Creating a sustainable community cardiopulmonary resuscitation (CPR) and automated external defibrillator (AED) program that reaches underserved communities poses a challenge for the emergency medical services (EMS) community. Attendance, funding, and resources have all been linked to struggles surrounding community CPR/AED programs. Through our experience in conducting CPR/AED trainings in underserved regions of eastern North Carolina, we propose a method of effectively utilizing existing organizations and institutions of learning to expand and maintain a sustainable community CPR/AED program. Furthermore, we demonstrate 10 cornerstones in developing relationships within the community to increase attendance and participation in diverse communities

    Differential CD4+ T-Lymphocyte Apoptosis and Bystander T-Cell Activation in Rhesus Macaques and Sooty Mangabeys during Acute Simian Immunodeficiency Virus Infection▿

    No full text
    In contrast to pathogenic lentiviral infections, chronic simian immunodeficiency virus (SIV) infection in its natural host is characterized by a lack of increased immune activation and apoptosis. To determine whether these differences are species specific and predicted by the early host response to SIV in primary infection, we longitudinally examined T-lymphocyte apoptosis, immune activation, and the SIV-specific cellular immune response in experimentally infected rhesus macaques (RM) and sooty mangabeys (SM) with controlled or uncontrolled SIV infection. SIVsmE041, a primary SIVsm isolate, reproduced set-point viremia levels of natural SIV infection in SM but was controlled in RM, while SIVmac239 replicated to high levels in RM. Following SIV infection, increased CD8+ T-lymphocyte apoptosis, temporally coinciding with onset of SIV-specific cellular immunity, and elevated plasma Th1 cytokine and gamma interferon-induced chemokine levels were common to both SM and RM. Different from SM, SIV-infected RM showed a significantly higher frequency of peripheral blood activated CD8+ T lymphocytes despite comparable magnitude of the SIV-specific gamma interferon enzyme-linked immunospot response. Furthermore, an increase in CD4+ and CD4−CD8− T-lymphocyte apoptosis and plasma tumor necrosis factor-related apoptosis-inducing ligand were observed only in RM and occurred in both controlled SIVsmE041 and uncontrolled SIVmac239 infection. These data suggest that the “excess” activated T lymphocytes in RM soon after SIV infection are predominantly of non-virus-specific bystander origin. Thus, species-specific differences in the early innate immune response appear to be an important factor contributing to differential immune activation in natural and nonnatural hosts of SIV infection
    corecore