43 research outputs found

    Identification of Immunotopes against Mycobacterium leprae as Immune Targets Using PhDTm- 12mer Phage Display Peptide Library

    Get PDF
    Purpose: To determine the surface epitopes of Mycobacterium leprae (M. leprae) and evaluate their efficacy in the production of anti-M. leprae antibodies in an animal model.Methods: Blood samples were obtained from 34 patients suffering from lepromatous leprosy. Antibodies were obtained from the samples, semi-purified and used to coat the wells of ELISA microplate, and M13 random-peptides library was added to the wells. After four rounds of panning, three clones were isolated and their peptide mimotopes were sequenced. Western blot was used to evaluate the interaction of the isolated mimotopes.Results: Three selective clones were tested by direct enzyme-linked immunosorbent assay (ELISA) and western blot. anti-leprae antibodies in various dilutions and were found to be serological active. Sequencing of the isolated peptides showed identities between the two clones that were able to successfully induce anti-Leprae humoral response in mice.Conclusion: The findings indicate that the isolated peptides can potentially be used for early diagnosis. However, further research is required to improve their potency as new vaccines against leprosy.Keywords: Bacteriophage, Vaccine, Leprosy, Mycobacterium leprae, Random Peptide Phage Display Librar

    Loss of LMO4 in the Retina Leads to Reduction of GABAergic Amacrine Cells and Functional Deficits

    Get PDF
    BACKGROUND: LMO4 is a transcription cofactor expressed during retinal development and in amacrine neurons at birth. A previous study in zebrafish reported that morpholino RNA ablation of one of two related genes, LMO4b, increases the size of eyes in embryos. However, the significance of LMO4 in mammalian eye development and function remained unknown since LMO4 null mice die prior to birth. METHODOLOGY/PRINCIPAL FINDINGS: We observed the presence of a smaller eye and/or coloboma in ∌40% LMO4 null mouse embryos. To investigate the postnatal role of LMO4 in retinal development and function, LMO4 was conditionally ablated in retinal progenitor cells using the Pax6 alpha-enhancer Cre/LMO4flox mice. We found that these mice have fewer Bhlhb5-positive GABAergic amacrine and OFF-cone bipolar cells. The deficit appears to affect the postnatal wave of Bhlhb5+ neurons, suggesting a temporal requirement for LMO4 in retinal neuron development. In contrast, cholinergic and dopaminergic amacrine, rod bipolar and photoreceptor cell numbers were not affected. The selective reduction in these interneurons was accompanied by a functional deficit revealed by electroretinography, with reduced amplitude of b-waves, indicating deficits in the inner nuclear layer of the retina. CONCLUSIONS/SIGNIFICANCE: Inhibitory GABAergic interneurons play a critical function in controlling retinal image processing, and are important for neural networks in the central nervous system. Our finding of an essential postnatal function of LMO4 in the differentiation of Bhlhb5-expressing inhibitory interneurons in the retina may be a general mechanism whereby LMO4 controls the production of inhibitory interneurons in the nervous system

    Left Bundle Branch Block, an Old–New Entity

    Get PDF
    Left bundle branch block (LBBB) is generally associated with a poorer prognosis in comparison to normal intraventricular conduction, but also in comparison to right bundle branch block which is generally considered to be benign in the absence of an underlying cardiac disorder like congenital heart disease. LBBB may be the first manifestation of a more diffuse myocardial disease. The typical surface ECG feature of LBBB is a prolongation of QRS above 0.11 s in combination with a delay of the intrinsic deflection in leads V5 and V6 of more than 60 ms and no septal q waves in leads I, V5, and V6 due to the abnormal septal activation from right to left. LBBB may induce abnormalities in left ventricular performance due to abnormal asynchronous contraction patterns which can be compensated by biventricular pacing (resynchronization therapy). Asynchronous electrical activation of the ventricles causes regional differences in workload which may lead to asymmetric hypertrophy and left ventricular dilatation, especially due to increased wall mass in late-activated regions, which may aggravate preexisting left ventricular pumping performance or even induce it. Of special interest are patients with LBBB and normal left ventricular dimensions and normal ejection fraction at rest but who may present with an abnormal increase in pulmonary artery pressure during exercise, production of lactate during high-rate pacing, signs of ischemia on myocardial scintigrams (but no coronary artery narrowing), and abnormal ultrastructural findings on myocardial biopsy. For this entity, the term latent cardiomyopathy had been suggested previously

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Airway mesenchymal cell death by mevalonate cascade inhibition: Integration of autophagy, unfolded protein response and apoptosis focusing on Bcl2 family proteins

    Get PDF
    HMG-CoA reductase, the proximal rate-limiting enzyme in the mevalonate pathway, is inhibited by statins. Beyond their cholesterol lowering impact, statins have pleiotropic effects and their use is linked to improved lung health. We have shown that mevalonate cascade inhibition induces apoptosis and autophagy in cultured human airway mesenchymal cells. Here, we show that simvastatin also induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in these cells. We tested whether coordination of ER stress, autophagy and apoptosis determines survival or demise of human lung mesenchymal cells exposed to statin. We observed that simvastatin exposure activates UPR (activated transcription factor 4, activated transcription factor 6 and IRE1α) and caspase-4 in primary human airway fibroblasts and smooth muscle cells. Exogenous mevalonate inhibited apoptosis, autophagy and UPR, but exogenous cholesterol was without impact, indicating that sterol intermediates are involved with mechanisms mediating statin effects. Caspase-4 inhibition decreased simvastatin-induced apoptosis, whereas inhibition of autophagy by ATG7 or ATG3 knockdown significantly increased cell death. In BAX-/-/BAK-/- murine embryonic fibroblasts, simvastatin-triggered apoptotic and UPR events were abrogated, but autophagy flux was increased leading to cell death via necrosis. Our data indicate that mevalonate cascade inhibition, likely associated with depletion of sterol intermediates, can lead to cell death via coordinated apoptosis, autophagy, and ER stress. The interplay between these pathways appears to be principally regulated by autophagy and Bcl-2-family pro-apoptotic proteins. These findings uncover multiple mechanisms of action of statins that could contribute to refining the use of such agent in treatment of lung disease. © 2014 Elsevier B.V
    corecore