103 research outputs found

    Genome-wide analysis of nuclear magnetic resonance metabolites revealed parent-of-origin effect on triglycerides in medium very low-density lipoprotein in PTPRD gene

    Get PDF
    The aim of the study was to explore the parent-of-origin effects (POEs) on a range of human nuclear magnetic resonance metabolites. Materials & methods: We search for POEs in 14,815 unrelated individuals from Estonian and Finnish cohorts using POE method for the genotype data imputed with 1000 G reference panel and 82 nuclear magnetic resonance metabolites. Results: Meta-analysis revealed the evidence of POE for the variant rs1412727 in PTPRD gene for the metabolite: triglycerides in medium very low-density lipoprotein. No POEs were detected for genetic variants that were previously known to have main effect on circulating metabolites. Conclusion: We demonstrated possibility to detect POEs for human metabolites, but the POEs are weak, and therefore it is hard to detect those using currently available sample sizes.Peer reviewe

    Psychiatric disorders and subsequent risk of cardiovascular disease: a longitudinal matched cohort study across three countries

    Get PDF
    Background: Several psychiatric disorders have been associated with increased risk of cardiovascular disease (CVD), however, the role of familial factors and the main disease trajectories remain unknown. Methods: In this longitudinal cohort study, we identified a cohort of 900,240 patients newly diagnosed with psychiatric disorders during January 1, 1987 and December 31, 2016, their 1,002,888 unaffected full siblings, and 1:10 age- and sex-matched reference population from nationwide medical records in Sweden, who had no prior diagnosis of CVD at enrolment. We used flexible parametric models to determine the time-varying association between first-onset psychiatric disorders and incident CVD and CVD death, comparing rates of CVD among patients with psychiatric disorders to the rates of unaffected siblings and matched reference population. We also used disease trajectory analysis to identify main disease trajectories linking psychiatric disorders to CVD. Identified associations and disease trajectories of the Swedish cohort were validated in a similar cohort from nationwide medical records in Denmark (N = 875,634 patients, same criteria during January 1, 1969 and December 31, 2016) and in Estonian cohorts from the Estonian Biobank (N = 30,656 patients, same criteria during January 1, 2006 and December 31, 2020), respectively. Findings: During up to 30 years of follow-up of the Swedish cohort, the crude incidence rate of CVD was 9.7, 7.4 and 7.0 per 1000 person-years among patients with psychiatric disorders, their unaffected siblings, and the matched reference population. Compared with their siblings, patients with psychiatric disorders experienced higher rates of CVD during the first year after diagnosis (hazard ratio [HR], 1.88; 95% confidence interval [CI], 1.79–1.98) and thereafter (1.37; 95% CI, 1.34–1.39). Similar rate increases were noted when comparing with the matched reference population. These results were replicated in the Danish cohort. We identified several disease trajectories linking psychiatric disorders to CVD in the Swedish cohort, with or without mediating medical conditions, including a direct link between psychiatric disorders and hypertensive disorder, ischemic heart disease, venous thromboembolism, angina pectoris, and stroke. These trajectories were validated in the Estonian Biobank cohort. Interpretation: Independent of familial factors, patients with psychiatric disorders are at an elevated risk of subsequent CVD, particularly during first year after diagnosis. Increased surveillance and treatment of CVDs and CVD risk factors should be considered as an integral part of clinical management, in order to reduce risk of CVD among patients with psychiatric disorders. Funding: This research was supported by EU Horizon 2020 Research and Innovation Action Grant, European Research Council Consolidator grant, Icelandic Research fund, Swedish Research Council, US NIMH, the Outstanding Clinical Discipline Project of Shanghai Pudong, the Fundamental Research Funds for the Central Universities, and the European Union through the European Regional Development Fund; the Research Council of Norway; the South-East Regional Health Authority, the Stiftelsen Kristian Gerhard Jebsen, and the EEA-RO-NO-2018-0535

    Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances

    Get PDF
    We use a genome-wide association of 1 million parental lifespans of genotyped subjects and data on mortality risk factors to validate previously unreplicated findings near CDKN2B-AS1, ATXN2/BRAP, FURIN/FES, ZW10, PSORS1C3, and 13q21.31, and identify and replicate novel findings near ABO, ZC3HC1, and IGF2R. We also validate previous findings near 5q33.3/EBF1 and FOXO3, whilst finding contradictory evidence at other loci. Gene set and cell-specific analyses show that expression in foetal brain cells and adult dorsolateral prefrontal cortex is enriched for lifespan variation, as are gene pathways involving lipid proteins and homeostasis, vesicle-mediated transport, and synaptic function. Individual genetic variants that increase dementia, cardiovascular disease, and lung cancer - but not other cancers - explain the most variance. Resulting polygenic scores show a mean lifespan difference of around five years of life across the deciles.Peer reviewe

    Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging

    Get PDF
    BACKGROUND: Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. RESULTS: Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. CONCLUSION: This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity

    Cell Specific eQTL Analysis without Sorting Cells

    Get PDF
    The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn’s disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus

    Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging

    Get PDF
    BACKGROUND: Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. RESULTS: Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. CONCLUSION: This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity

    DNA methylation signature of chronic low-grade inflammation and its role in cardio-respiratory diseases

    Get PDF
    We performed a multi-ethnic Epigenome Wide Association study on 22,774 individuals to describe the DNA methylation signature of chronic low-grade inflammation as measured by C-Reactive protein (CRP). We find 1,511 independent differentially methylated loci associated with CRP. These CpG sites show correlation structures across chromosomes, and are primarily situated in euchromatin, depleted in CpG islands. These genomic loci are predominantly situated in transcription factor binding sites and genomic enhancer regions. Mendelian randomization analysis suggests altered CpG methylation is a consequence of increased blood CRP levels. Mediation analysis reveals obesity and smoking as important underlying driving factors for changed CpG methylation. Finally, we find that an activated CpG signature significantly increases the risk for cardiometabolic diseases and COPD

    Genetic and epigenetic regulation of gene expression in fetal and adult human livers

    Get PDF
    Background: The liver plays a central role in the maintenance of homeostasis and health in general. However, there is substantial inter-individual variation in hepatic gene expression, and although numerous genetic factors have been identified, less is known about the epigenetic factors. Results: By analyzing the methylomes and transcriptomes of 14 fetal and 181 adult livers, we identified 657 differentially methylated genes with adult-specific expression, these genes were enriched for transcription factor binding sites of HNF1A and HNF4A. We also identified 1,000 genes specific to fetal liver, which were enriched for GATA1, STAT5A, STAT5B and YY1 binding sites. We saw strong liver-specific effects of single nucleotide polymorphisms on both methylation levels (28,447 unique CpG sites (meQTL)) and gene expression levels (526 unique genes (eQTL)), at a false discovery rate (FDR) <0.05. Of the 526 unique eQTL associated genes, 293 correlated significantly not only with genetic variation but also with methylation levels. The tissue-specificities of these associations were analyzed in muscle, subcutaneous adipose tissue and visceral adipose tissue. We observed that meQTL were more stable between tissues than eQTL and a very strong tissue-specificity for the identified associations between CpG methylation and gene expression. Conclusions: Our analyses generated a comprehensive resource of factors involved in the regulation of hepatic gene expression, and allowed us to estimate the proportion of variation in gene expression that could be attributed to genetic and epigenetic variation, both crucial to understanding differences in drug response and the etiology of liver diseases

    Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes

    Get PDF
    Type 2 diabetes (T2D) is a very common disease in humans. Here we conduct a meta-analysis of genome-wide association studies (GWAS) with ~16 million genetic variants in 62,892 T2D cases and 596,424 controls of European ancestry. We identify 139 common and 4 rare variants associated with T2D, 42 of which (39 common and 3 rare variants) are independent of the known variants. Integration of the gene expression data from blood (n = 14,115 and 2765) with the GWAS results identifies 33 putative functional genes for T2D, 3 of which were targeted by approved drugs. A further integration of DNA methylation (n = 1980) and epigenomic annotation data highlight 3 genes (CAMK1D, TP53INP1, and ATP5G1) with plausible regulatory mechanisms, whereby a genetic variant exerts an effect on T2D through epigenetic regulation of gene expression. Our study uncovers additional loci, proposes putative genetic regulatory mechanisms for T2D, and provides evidence of purifying selection for T2D-associated variants
    • 

    corecore