242 research outputs found
Youthful Processing Speed in Older Adults: Genetic, Biological, and Behavioral Predictors of Cognitive Processing Speed Trajectories in Aging.
Objective: To examine the impact of genetic, inflammatory, cardiovascular, lifestyle, and neuroanatomical factors on cognitive processing speed (CPS) change over time in functionally intact older adults. Methods: This observational study conducted over two time points, included 120 community dwelling cognitively normal older adults between the ages of 60 and 80 from the University of California San Francisco Memory and Aging Center. Participants were followed with composite measures of CPS, calculated based on norms for 20-30 year-olds. Variables of interest were AD risk genes (APOE, CR1), markers of inflammation (interleukin 6) and cardiovascular health (BMI, LDL, HDL, mean arterial pressure, fasting insulin), self-reported physical activity, and corpus callosum (CC) volumes. The sample was divided into three groups: 17 "resilient-agers" with fast and stable processing speed; 56 "average-agers" with average and stable processing speed; and 47 "sub-agers" with average baseline speed who were slower at follow-up. Results: Resilient-agers had larger baseline CC volumes than sub-agers (p < 0.05). Resilient-agers displayed lower levels of interleukin-6 (IL-6) and insulin (ps < 0.05) than sub-agers, and reported more physical activity than both average- and sub-agers (ps < 0.01). In a multinomial logistic regression, physical activity and IL-6 predicted average- and sub-ager groups. Resilient-agers displayed a higher frequency of APOE e4 and CR1 AA/AG alleles. Conclusion: Robust and stable CPS is associated with larger baseline CC volumes, lower levels of inflammation and insulin, and greater self-reported physical activity. These findings highlight the relevance of neuroanatomical, biological, and lifestyle factors in the identification and prediction of heterogeneous cognitive aging change over time
Distinguishing environmental effects on binary black hole gravitational waveforms
Future gravitational wave interferometers such as the Laser Interferometer Space Antenna, Taiji, DECi-hertz Interferometer Gravitational wave Observatory and TianQin will enable precision studies of the environment surrounding black holes. These detectors will probe the millihertz frequency range, as yet unexplored by current gravitational wave detectors. Furthermore, sources will remain in band for durations of up to years, meaning that the inspiral phase of the gravitational wave signal, which can be affected by the environment, will be observable. In this paper, we study intermediate and extreme mass ratio binary black hole inspirals, and consider three possible environments surrounding the primary black hole: accretion disks, dark matter spikes and clouds of ultra-light scalar fields, also known as gravitational atoms. We present a Bayesian analysis of the detectability and measurability of these three environments. Focusing for concreteness on the case of a detection with LISA, we show that the characteristic imprint they leave on the gravitational waveform would allow us to identify the environment that generated the signal and to accurately reconstruct its model parameters.</p
Recommended from our members
A Comprehensive Resource for Induced Pluripotent Stem Cells from Patients with Primary Tauopathies.
Primary tauopathies are characterized neuropathologically by inclusions containing abnormal forms of the microtubule-associated protein tau (MAPT) and clinically by diverse neuropsychiatric, cognitive, and motor impairments. Autosomal dominant mutations in the MAPT gene cause heterogeneous forms of frontotemporal lobar degeneration with tauopathy (FTLD-Tau). Common and rare variants in the MAPT gene increase the risk for sporadic FTLD-Tau, including progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). We generated a collection of fibroblasts from 140 MAPT mutation/risk variant carriers, PSP, CBD, and cognitively normal controls; 31 induced pluripotent stem cell (iPSC) lines from MAPT mutation carriers, non-carrier family members, and autopsy-confirmed PSP patients; 33 genome engineered iPSCs that were corrected or mutagenized; and forebrain neural progenitor cells (NPCs). Here, we present a resource of fibroblasts, iPSCs, and NPCs with comprehensive clinical histories that can be accessed by the scientific community for disease modeling and development of novel therapeutics for tauopathies
Downregulation of exosomal miR-204-5p and miR-632 as a biomarker for FTD: a GENFI study
OBJECTIVE: To determine whether exosomal microRNAs (miRNAs) in cerebrospinal fluid (CSF) of patients with frontotemporal dementia (FTD) can serve as diagnostic biomarkers, we assessed miRNA expression in the Genetic Frontotemporal Dementia Initiative (GENFI) cohort and in sporadic FTD. METHODS: GENFI participants were either carriers of a pathogenic mutation in progranulin, chromosome 9 open reading frame 72 or microtubule-associated protein tau or were at risk of carrying a mutation because a first-degree relative was a known symptomatic mutation carrier. Exosomes were isolated from CSF of 23 presymptomatic and 15 symptomatic mutation carriers and 11 healthy non-mutation carriers. Expression of 752 miRNAs was measured using quantitative PCR (qPCR) arrays and validated by qPCR using individual primers. MiRNAs found differentially expressed in symptomatic compared with presymptomatic mutation carriers were further evaluated in a cohort of 17 patients with sporadic FTD, 13 patients with sporadic Alzheimer's disease (AD) and 10 healthy controls (HCs) of similar age. RESULTS: In the GENFI cohort, miR-204-5p and miR-632 were significantly decreased in symptomatic compared with presymptomatic mutation carriers. Decrease of miR-204-5p and miR-632 revealed receiver operator characteristics with an area of 0.89 (90% CI 0.79 to 0.98) and 0.81 (90% CI 0.68 to 0.93), respectively, and when combined an area of 0.93 (90% CI 0.87 to 0.99). In sporadic FTD, only miR-632 was significantly decreased compared with AD and HCs. Decrease of miR-632 revealed an area of 0.90 (90% CI 0.81 to 0.98). CONCLUSIONS: Exosomal miR-204-5p and miR-632 have potential as diagnostic biomarkers for genetic FTD and miR-632 also for sporadic FTD
Downregulation of exosomal miR-204-5p and miR-632 as a biomarker for FTD: A GENFI study
Objective: To determine whether exosomal microRNAs (miRNAs) in cerebrospinal fluid (CSF) of patients with frontotemporal dementia (FTD) can serve as diagnostic biomarkers, we assessed miRNA expression in the Genetic Frontotemporal Dementia Initiative (GENFI) cohort and in sporadic FTD. Methods: GENFI participants were either carriers of a pathogenic mutation in progranulin, chromosome 9 open reading frame 72 or microtubule-associated protein tau or were at risk of carrying a mutation because a first-degree relative was a known symptomatic mutation carrier. Exosomes were isolated from CSF of 23 presymptomatic and 15 symptomatic mutation carriers and 11 healthy non-mutation carriers. Expression of 752 miRNAs was measured using quantitative PCR (qPCR) arrays and validated by qPCR using individual primers. MiRNAs found differentially expressed in symptomatic compared with presymptomatic mutation carriers were further evaluated in a cohort of 17 patients with sporadic FTD, 13 patients with sporadic Alzheimer's disease (AD) and 10 healthy controls (HCs) of similar age. Results: In the GENFI cohort, miR-204-5p and miR-632 were significantly decreased in symptomatic compared with presymptomatic mutation carriers. Decrease of miR-204-5p and miR-632 revealed receiver operator characteristics with an area of 0.89 (90% CI 0.79 to 0.98) and 0.81 (90% CI 0.68 to 0.93), respectively, and when combined an area of 0.93 (90% CI 0.87 to 0.99). In sporadic FTD, only miR-632 was significantly decreased compared with AD and HCs. Decrease of miR-632 revealed an area of 0.90 (90% CI 0.81 to 0.98). Conclusions: Exosomal miR-204-5p and miR-632 have potential as diagnostic biomarkers for genetic FTD and miR-632 also for sporadic FTD
Green Tax Reform, Endogenous Innovation and the Growth Dividend
We study theoretically and numerically the effects of an environmental tax reform using endogenous growth theory. In the theoretical part, mobile labor between manufacturing and R&D activities, and elasticity of substitution between labor and energy in manufacturing lower than unity allow for a growth dividend, even if we consider preexisting tax distortions. The scope for innovation is reduced when we consider direct financial investment in the lab, or elastic labor supply. We then apply the core theoretical model to a real growing economy and find that a boost in economic growth following such a carbon policy is a possible outcome. Lump-sum redistribution performs best in terms of effciency measured by aggregate welfare, while in terms of equity among social segments its progressive character fails when we consider very high emissions reduction targets
Clinical value of cerebrospinal fluid neurofilament light chain in semantic dementia
© Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.Background: Semantic dementia (SD) is a neurodegenerative disorder characterised by progressive language problems falling within the clinicopathological spectrum of frontotemporal lobar degeneration (FTLD). The development of disease-modifying agents may be facilitated by the relative clinical and pathological homogeneity of SD, but we need robust monitoring biomarkers to measure their efficacy. In different FTLD subtypes, neurofilament light chain (NfL) is a promising marker, therefore we investigated the utility of cerebrospinal fluid (CSF) NfL in SD.
Methods: This large retrospective multicentre study compared cross-sectional CSF NfL levels of 162 patients with SD with 65 controls. CSF NfL levels of patients were correlated with clinical parameters (including survival), neuropsychological test scores and regional grey matter atrophy (including longitudinal data in a subset).
Results: CSF NfL levels were significantly higher in patients with SD (median: 2326 pg/mL, IQR: 1628-3593) than in controls (577 (446-766), p<0.001). Higher CSF NfL levels were moderately associated with naming impairment as measured by the Boston Naming Test (rs =-0.32, p=0.002) and with smaller grey matter volume of the parahippocampal gyri (rs =-0.31, p=0.004). However, cross-sectional CSF NfL levels were not associated with progression of grey matter atrophy and did not predict survival.
Conclusion: CSF NfL is a promising biomarker in the diagnostic process of SD, although it has limited cross-sectional monitoring or prognostic abilities.This study was funded by a Memorabel grant from Deltaplan Dementie (The Netherlands Organisation for Health Research and Development, and Alzheimer Nederland grant number 7330598105), National Institutes of Health (Grants AG010124, AG032953, AG043503, NS088341, AG017586, AG052943, AG038490), the Wyncote Foundation, Dana Foundation, Brightfocus Foundation, Penn Institute on Aging, Pla estratègic de recerca i innovació en salut 2016-2020, Catalan Department of Health (grant number SLT002/16/00408), Italian Ministry of Health (Ricerca Corrente) and the German Federal Ministry of Education and Research (FTLDc 01GI1007A). MS was supported by the Else Kröner-Fresenius-Stiftung. CW was supported by the Vaillant Stiftunginfo:eu-repo/semantics/publishedVersio
Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD
Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1,131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (pvalue=4.82e-08, OR=2.12), and two known loci: UNC13A, led by rs1297319 (pvalue=1.27e-08, OR=1.50) and HLA-DQA2 led by rs17219281 (pvalue=3.22e-08, OR=1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n≥3) as compared to controls (n=0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g. DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis
Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD
Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole-genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (p value = 4.82e − 08, OR = 2.12), and two known loci: UNC13A, led by rs1297319 (p value = 1.27e − 08, OR = 1.50) and HLA-DQA2 led by rs17219281 (p value = 3.22e − 08, OR = 1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole-genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n ≥ 3) as compared to controls (n = 0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g., DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis
- …