368 research outputs found

    Multicomponent intervention to reduce daily sedentary time: a randomised controlled trial

    Get PDF
    Objectives To test the efficacy of a multicomponent technology intervention for reducing daily sedentary time and improving cardiometabolic disease risk among sedentary, overweight university employees. Design Blinded, randomised controlled trial. Setting A large south-eastern university in the USA. Participants 49 middle-aged, primarily female, sedentary and overweight adults working in sedentary jobs enrolled in the study. A total of 40 participants completed the study. Interventions Participants were randomised to either: (1) an intervention group (N=23; 47.6+9.9 years; 94.1% female; 33.2+4.5 kg/m2); (2) or wait-list control group (N=17; 42.6+8.9 years; 86.9% female; 31.7+4.9 kg/m2). The intervention group received a theory-based, internet-delivered programme, a portable pedal machine at work and a pedometer for 12 weeks. The wait-list control group maintained their behaviours for 12 weeks. Outcome measures Primary (sedentary and physical activity behaviour measured objectively through StepWatch) and secondary (heart rate, blood pressure, height, weight, waist circumference, per cent body fat, cardiorespiratory fitness, fasting lipids) outcomes were measured at baseline and postintervention (12 weeks). Exploratory outcomes including intervention compliance and process evaluation measures were also assessed postintervention. Results Compared to controls, the intervention group reduced daily sedentary time (mean change (95%CI): −58.7 min/day (−118.4 to 0.99; p<0.01)) after adjusting for baseline values and monitor wear time. Intervention participants logged on to the website 71.3% of all intervention days, used the pedal machine 37.7% of all working intervention days and pedalled an average of 31.1 min/day. Conclusions These findings suggest that the intervention was engaging and resulted in reductions in daily sedentary time among full-time sedentary employees. These findings hold public health significance due to the growing number of sedentary jobs and the potential of these technologies in large-scale worksite programmes. Trial Registration ClinicalTrials.gov #NCT01371084

    Thermal Control of Plasmonic Surface Lattice Resonances

    Get PDF
    Plasmonic metasurfaces exhibiting collective responses known as surface lattice resonances (SLRs) show potential for realizing tunable and flat photonic components for wavelength-selective processes, including lasing and optical nonlinearities. However, post-fabrication tuning of SLRs remains challenging, limiting the applicability of SLR-based components. Here, we demonstrate how the properties of high quality factor SLRs are easily modified by breaking the symmetry of the nanoparticle surroundings. We break the symmetry by changing the refractive index of the overlying immersion oil simply by controlling the ambient temperature of the device. We show that already modest temperature changes of 10{\deg}C can increase the quality factor of the investigated SLR from 400 to 750. Our results demonstrate accurate and reversible modification of the properties of the SLRs, paving the way towards tunable SLR-based photonic devices. On a more general level, our results demonstrate how symmetry breaking of the surrounding dielectric environment can be utilized for efficient and potentially ultrafast modification of the SLR properties

    Polarization conversion by dielectric subwavelength gratings in conical mounting

    Get PDF
    Subwavelength dielectric gratings are examined in total-internal-reflection configuration. It is demonstrated experimentally that such elements, fabricated in TiO2, can perform full polarization conversion from incident TE to TM with nearly 100% efficiency. The dependence of the polarization conversion on the angle of incidence is analyzed. Rigorous diffraction theory is used to cross check the experimental results

    Branched-Chain Amino Acid Deprivation Decreases Lipid Oxidation and Lipogenesis in C2C12 Myotubes

    Get PDF
    Impaired lipid metabolism is a common risk factor underlying several metabolic diseases such as metabolic syndrome and type 2 diabetes. Branched-chain amino acids (BCAAs) that include valine, leucine and isoleucine have been proven to share a role in lipid metabolism and hence in maintaining metabolic health. We have previously introduced a hypothesis suggesting that BCAA degradation mechanistically connects to lipid oxidation and storage in skeletal muscle. To test our hypothesis, the present study examined the effects of BCAA deprivation and supplementation on lipid oxidation, lipogenesis and lipid droplet characteristics in murine C2C12 myotubes. In addition, the role of myotube contractions on cell metabolism was studied by utilizing in vitro skeletal-muscle-specific exercise-like electrical pulse stimulation (EPS). Our results showed that the deprivation of BCAAs decreased both lipid oxidation and lipogenesis in C2C12 myotubes. BCAA deprivation further diminished the number of lipid droplets in the EPS-treated myotubes. EPS decreased lipid oxidation especially when combined with high BCAA supplementation. Similar to BCAA deprivation, high BCAA supplementation also decreased lipid oxidation. The present results highlight the role of an adequate level of BCAAs in healthy lipid metabolism.Peer reviewe

    Scedosporium apiospermum as a rare cause of central skull base osteomyelitis.

    Get PDF
    We report a case of Scedosporium apiospermum mold causing ear infection, central skull base osteomyelitis and finally, occlusion of carotid artery in a 48-year-old diabetic man. The exact diagnosis was established and the severity of the disease understood several months after the onset of symptoms. Despite of appropriate antifungal therapy, and repeated surgical and otological procedures, the infection progressed to fatal cerebral infarction

    Indicator-based assessment of marine biological diversity-lessons from 10 case studies across the European seas

    Get PDF
    The Marine Strategy Framework Directive requires the environmental status of European marine waters to be assessed using biodiversity as 1 out of 11 descriptors, but the complexity of marine biodiversity and its large span across latitudinal and salinity gradients have been a challenge to the scientific community aiming to produce approaches for integrating information from a broad range of indicators. The Nested Environmental status Assessment Tool (NEAT), developed for the integrated assessment of the status of marine waters, was applied to 10 marine ecosystems to test its applicability and compare biodiversity assessments across the four European regional seas. We evaluate the assessment results as well as the assessment designs of the 10 cases, and how the assessment design, particularly the choices made regarding the area and indicator selection, affected the results. The results show that only 2 out of the 10 case study areas show more than 50% probability of being in good status in respect of biodiversity. No strong pattern among the ecosystem components across the case study areas could be detected, but marine mammals, birds, and benthic vegetation indicators tended to indicate poor status while zooplankton indicators indicated good status when included into the assessment. The analysis shows that the assessment design, including the selection of indicators, their target values, geographical resolution and habitats to be assessed, has potentially a high impact on the result, and the assessment structure needs to be understood in order to make an informed assessment. Moreover, recommendations are provided for the best practice of using NEAT for marine status assessments

    Lawns and meadows in urban green space – a comparison from perspectives of greenhouse gases, drought resilience and plant functional types

    Get PDF
    Today, city planners design urban futures by considering environmental degradation and climate mitigation. Here, we studied the greenhouse gas fluxes of urban lawns and meadows and linked the observations with plant functional types and soil properties. In eight lawns and eight meadows in the Helsinki metropolitan area, Finland, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes were measured using manual chambers, and plant functional types were recorded. Four of these sites, i.e. an irrigated lawn, an old mesic meadow, a non-irrigated lawn and a young dry meadow, were more intensively studied in 2021–2022. The process-based ecosystem model JSBACH was utilized together with the momentary observations collected approximately every second week on CO2 exchange to quantify the annual carbon (C) balance of these sites. On the remaining sites, we studied the initial dynamics of conversion from lawns to meadows by transforming parts of lawns to meadows in late 2020 and conducting measurements from 2020 to 2022. The mean photosynthetic production (GPP) of the irrigated lawn and mesic meadow was the highest in this study, whereas the dry meadow had the lowest GPP. The studied lawns were stronger C sinks compared to the meadows. However, the net exchange values were uncertain as the soils were not in equilibrium with the vegetation at all sites, which is common for urban habitats, and modelling the heterotrophic emissions was therefore challenging. The conversion from a lawn to a meadow did not affect the fluxes of CH4 and N2O. Moreover, the mesic meadow was more resistant to drought events than the non-irrigated lawn. Lastly, the proportion of herbaceous flowering plants other than grasses was higher in meadows than in lawns. Even though social and economic aspects also steer urban development, these results can guide planning when considering environmentally friendlier green spaces and carbon smartness.</p

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors

    Get PDF
    We provide research findings on the physics of aerosol and droplet dispersion relevant to the hypothesized aerosol transmission of SARS-CoV-2 during the current pandemic. We utilize physics-based modeling at different levels of complexity, along with previous literature on coronaviruses, to investigate the possibility of airborne transmission. The previous literature, our 0D-3D simulations by various physics-based models, and theoretical calculations, indicate that the typical size range of speech and cough originated droplets (dPeer reviewe
    corecore