13 research outputs found

    Charge Transfer Mediated Triplet Excited State Formation in Donor-Acceptor-Donor BODIPY: Application for Recording of Holographic Structures in Photopolymerizable Glass

    Get PDF
    Donor–acceptor–donor BODIPY triads bearing anthracene or pyrene as electron donating subunits were prepared through a stepwise synthesis. Photoinduced electron transfer and formation of long-lived triplet excited states via spin–orbit charge transfer intersystem crossing (SOCT-ISC) was studied by steady-state and ultrafast pump-probe spectroscopy and further supported by DFT computations. New BODIPYs were found to form triplet states and sensitize singlet oxygen in both polar and non-polar solvents which is unusual for photosensitizers operating via SOCT-ISC. BODIPY-anthracene triad (ABA) was used as a photosensitizer component in a photopolymerizable glass that was prepared by a four-step sol–gel process. ABA in combination with N-phenylglycin (NPG) showed the ability to initiate a free-radical polymerization of methacrylate monomers under 532 nm irradiation thus allowing for holographic recording of diffractive structures. High diffraction efficiency (up to 87%) obtained for ABA-NPG containing glass as compared to a reference diiodo-BODIPY (I2BDP) demonstrates for the first time that heavy-atom-free SOCT-ISC photosensitizers can efficiently operate in the solid state

    Buildup of Triplet-State Population in Operating TQ1:PC71BM Devices Does Not Limit Their Performance

    No full text
    Triplet generation in organic solar cells has been considered a major loss channel. Determining the density of the triplet-state population in an operating device is challenging. Here, we employ transient absorption (TA) spectroscopy on the quinoxaline-thiophene copolymer TQ1 blended with PC71BM, quantify the transient charge and tripletstate densities, and parametrize their generation and recombination dynamics. The charge recombination parameters reproduce the experimentally measured current-voltage characteristics in charge carrier drift-diffusion simulations, and they yield the steady-state charge densities. We demonstrate that triplets are formed by both geminate and nongeminate recombination of charge carriers and decay primarily by triplet-triplet annihilation. Using the charge densities in the rate equations describing triplet-state dynamics, we find that triplet-state densities in devices are in the range of charge carrier densities. Despite this substantial triplet-state buildup, TQ1:PC71BM devices exhibit only moderate geminate recombination and significantly reduced nongeminate charge recombination, with reduction factors between 10(-4) and 10(-3) compared to Langevin recombination.Funding Agencies|King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) [OSR2018-CARF/CCF-3079]; Knut and Alice Wallenberg FoundationKnut &amp; Alice Wallenberg Foundation [KAW 2016.0494]</p

    The effect of oxygen induced degradation on charge carrier dynamics in P3HT:PCBM and Si-PCPDTBT:PCBM thin films and solar cells

    No full text
    Due to their light weight, transparency and flexibility, organic photovoltaic (OPV) devices are ideal for building integration. As this application requires solar cell life times of more than twenty years and oxygen ingress cannot be avoided at competitive cost on this time scale, OPV modules must be intrinsically stabilized against photo-oxidation. To this end, the mechanism of rapid performance loss of OSCs due to oxygen-induced degradation must be understood. Here, we combine transient absorption experiments with electrical studies in P3HT:PCBM and Si-PCPDTBT:PCBM thin films and solar cells after controlled photo-oxidation, studying charge carrier dynamics on the femtosecond to millisecond time scale. We find that oxygen-induced degradation does not significantly influence charge generation, while its influence on charge recombination is strong in both materials. A dramatic retardation of charge recombination already at low levels of oxygen-induced degradation is attributed to a substantial reduction of charge mobilities. We also observe a significant increase of the background concentration of charge carriers with the level of degradation, which leads to a crossover from second order towards pseudo-first order recombination behaviour. Extraction is shown to be retarded even more strongly than recombination, possibly by a reduction of the extraction field by the background carriers. Overall, the recombination yield is increased with degradation, explaining the strong performance loss already at low degradation levels

    Efficient Long - Range Electron Transfer Processes in Polyfluorene – Perylene Diimide Blends

    No full text
    In bulk heterojunction donor-acceptor (D-A) blends, high photovoltaic yields require charge carrier separation to outcompete geminate recombination. Recently, evidence for long-range electron transfer mechanisms has been presented, avoiding strongly-bound interfacial charge transfer (CT) states. However, due to the lack of specific optical probes at the D-A interface, a detailed quantification of the long-range processes has not been feasible, until now. Here, we present a transient absorption study of long-range processes in a unique phase consisting of perylene diimide (PDI) crystals intercalated with polyfluorene (PFO), as widely used non-fullerene electron acceptor and donor, respectively. The intercalated PDI:PFO phase possesses specific well-separated spectral features for the excited states at the D-A interface. By use of femtosecond spectroscopy we reveal the excitation dynamics in this blend. PDI excitons undergo a clear symmetry-breaking charge separation in the PDI bulk, which occurs within several hundred femtoseconds, thus outcompeting excimer formation, known to limit charge separation yields when PDI is used as an acceptor. In contrast, PFO excitons are dissociated with very high yields in a one-step long-range process, enabled by large delocalization of the PFO exciton wavefunction. Moreover, both scenarios circumvent the formation of strongly-bound interfacial CT states and enable a targeted interfacial design for bulk heterojunction blends with near unity charge separation yields

    Effect of Quencher, Geometry, and Light Outcoupling on the Determination of Exciton Diffusion Length in Nonfullerene Acceptors

    No full text
    The correct determination of the exciton diffusion length (LD) in novel organic photovoltaics (OPV) materials is an important, albeit challenging, task required to understand these systems. Herein, a high-throughput approach to probe LD in nonfullerene acceptors (NFAs) is reported, that builds upon the conventional photoluminescence (PL) surface quenching method using NFA layers with a graded thickness variation in combination with spectroscopic PL mapping. The method is explored for two archetypal NFAs, namely, ITIC and IT-4F, using PEDOT:PSS and the donor polymer PM6 as two distinct and practically relevant quencher materials. Interestingly, conventional analysis of quenching efficiency as a function of acceptor layer thickness results in a threefold difference in LD values depending on the specific quencher. This discrepancy can be reconciled by accounting for the differences in light in- and outcoupling efficiency for different multilayer architectures. In particular, it is shown that the analysis of glass/acceptor/PM6 structures results in a major overestimation of LD, whereas glass/acceptor/PEDOT:PSS structures give no significant contribution to outcoupling, yielding LD values of 6−12 and 8−18 nm for ITIC and IT-4F, respectively. Hence, practical guidelines for quencher choice, sample geometries, and analysis approach for the accurate assessment of LD are provided.V.B., A.P., and J.G. contributed equally to this work. The authors acknowledge that this research was financially supported by the European Research Council (ERC) under grant agreement no. 648901. The authors also acknowledge financial support from the Spanish Ministry of Science and Innovation through the Severo Ochoa Program for Centers of Excellence in R&D (CEX2019-000917-S) and project PGC2018-095411-B-I00. This publication was based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under award no: OSR-2018-CARF/CCF-3079 and award no. OSR-CRG2018-3746. The authors thank Anastasia Ragulskaya (The University of Tübingen) for contributing to the development of the computational model.Peer reviewe

    Diethoxycarbonyl-BODIPYs as heavy-atom-free photosensitizers for holographic recording in cellulose acetate photopolymer

    No full text
    A series of new heavy-atom-free photosensitizers based on 2,6-diethoxycarbonyl-BODIPY scaffold was designed and applied for holographic recording in a photopolymerizable material. Photoinduced electron transfer between the BODIPY and meso-aryl subunits, followed by the formation of BODIPY triplet excited states via spin-orbit charge transfer intersystem crossing (SOCT-ISC) was studied by steady-state and ultrafast pump-probe transient optical spectroscopy. Highly efficient photosensitization was observed for dyads bearing pyrene and anthracene substituents, which exhibited singlet oxygen generation quantum yields () of up to 94%. Charge transfer and SOCT-ISC were observed in non-polar solvent (toluene) due to the increased electron accepting ability of the diethoxycarbonyl-BODIPY. In combination with N-phenylglycin (NPG) as a co-initiator, new BODIPYs initiate a free-radical polymerization of acrylamide monomers under 532 nm irradiation that was used for creation of volume phase transmission gratings in a photopolymerizable material based on cellulose acetate and polyethylene glycol (CA-PEG). As a result of holographic recording, diffractive structures with diffraction efficiency of up to 56% were obtained for CA-PEG layers sensitized with BODIPY-pyrene dyad as compared to a reference heavy-atom-containing diiodo-BODIPY dye (27%). The developed materials showed refractive index modulation of up to 2.3 × 10-3, which demonstrate the potential of diethoxycarbonyl-BODIPYs photosensitizers for holographic recording applications

    Double‐Cable Conjugated Polymers with Pendent Near‐Infrared Electron Acceptors for Single‐Component Organic Solar Cells

    No full text
    It has been anticipated that incorporating near-infrared (NIR) electron acceptors into double-cable conjugated polymers will propel the efficiency of single-component organic solar cells (SCOSCs) to a new level, but this kind of polymers has not been reported to date. It is a highly challenging task to develop such polymers due to the synthetic difficulty, and meanwhile realize high performance in SCOSCs owing to the unique charge transport characteristics in NIR acceptors. In this work, we are able to develop double-cable polymers with pendent NIR acceptors via judicious synthetic routes, providing a broad absorption spectrum from 300 nm to 850 nm. More importantly, the charge generation process was significantly improved when replacing two acceptors-substituted monomer by single-substitution in the new double-cable polymers, so that an efficiency over 8% with high photocurrent of 16.6 mA/cm2 could be obtained. In addition, SCOSCs also provided low voltage losses of 0.58 V that was comparable to bulk-heterojunction solar cells. All these results demonstrate the powerful design of NIR acceptors based double-cable polymers and will enable SCOSCs to enter into a new era
    corecore