189 research outputs found

    STATISTICAL AND COST EFFICIENCY OF SIMPLE RANDOM SAMPLING AND SYSTEMATIC SAMPLING IN ESTIMATING FOREST STAND PARAMETERS AT YAGIRALA

    Get PDF
    The study was carried out at a 24 years old Pinus rurbaca plantation located in lowlandwet zone of Sri Lanka. Statistical and cost efficiency were compared at samplingintensities or 11.1 %. 1l).4(/rJ and 32.4%. using simple random sampling design andsystematic sampling design. Circular sampling units of 0.0."> ha with slope correction. andboundary adjustment were also applied. Sampling units of simple random sampling werearranged in a hexagonal pattern. and selected (without replacement) after generatingrandom numbers. Diameter at breast height and total height within each sampling unitwere measured 10 estimate hasal area per ha and volume per ha. Walking time andmeasuring lime were recorded 10 calculate the variable costs of the inventory of all speciesat 32.4% sampling intensity.The pine population shows normal distribution. and simple random sampling represents itmore closely than systematic sampling. Naturally regenerated tree species under pineplantation arc effecting the diameter distrihution.S irnplc random sampling gives hcucr estimates of basal area per ha and volume per ha forpine than systematic sampling. For all species. systematic sampling gives better estimatesat lower sampling intensities.III simple random sampling. the most efficient sampling intensity is 32.4%. However.11.1 % can be recommended for 2.">% sampling errol". In all species. relative efficiency ofthe two sampling designs does not show a significant difference. Simple random samplingis more efficient lor all species at 32.4% intensity.The delayed silvicultural operation is found to effect the pine population and there is aneed for proper management of the forest,

    Influence of nominal composition variation on phase evolution and creep life of Type 316H austenitic stainless steel components

    Get PDF
    AbstractThe present work aims to understand the influence of variation in chemical composition in the long term evolution of secondary phases. Three samples with nominal composition of Type 316H but different specific composition have been exposed to 505°C during 150, 145 and 300 kh. The percentage of ferrite and M23C6 carbide have been measured using EBSD and compared with Thermo-Calc predictions. In addition, thin foils were prepared and characterized to identify secondary phases in the samples. The discussion is focused on the influence of the secondary phases on creep deformation and failure

    Scale up your In-Memory Accelerator: Leveraging Wireless-on-Chip Communication for AIMC-based CNN Inference

    Get PDF
    Analog In-Memory Computing (AIMC) is emerging as a disruptive paradigm for heterogeneous computing, potentially delivering orders of magnitude better peak performance and efficiency over traditional digital signal processing architectures on Matrix-Vector multiplication. However, to sustain this throughput in real-world applications, AIMC tiles must be supplied with data at very high bandwidth and low latency; this poses an unprecedented pressure on the on-chip communication infrastructure, which becomes the system's performance and efficiency bottleneck. In this context, the performance and plasticity of emerging on-chip wireless communication paradigms provide the required breakthrough to up-scale on-chip communication in large AIMC devices. This work presents a many-tile AIMC architecture with inter-tile wireless communication that integrates multiple heterogeneous computing clusters, embedding a mix of parallel RISC-V cores and AIMC tiles. We perform an extensive design space exploration of the proposed architecture and discuss the benefits of exploiting emerging on-chip communication technologies such as wireless transceivers in the millimeter-wave and terahertz band

    Graphene-based Wireless Agile Interconnects for Massive Heterogeneous Multi-chip Processors

    Get PDF
    The main design principles in computer architecture have recently shifted from a monolithic scaling-driven approach to the development of heterogeneous architectures that tightly co-integrate multiple specialized processor and memory chiplets. In such data-hungry multi-chip architectures, current Networksin- Package (NiPs) may not be enough to cater to their heterogeneous and fast-changing communication demands. This position paper makes the case for wireless in-package networking as the enabler of efficient and versatile wired-wireless interconnect fabrics for massive heterogeneous processors. To that end, the use of graphene-based antennas and transceivers with unique frequency-beam reconfigurability in the terahertz band is proposed. The feasibility of such a wireless vision and the main research challenges towards its realization are analyzed from the technological, communications, and computer architecture perspectives

    Two new plant nutrient nanocomposites based on urea coated hydroxyapatite: Efficacy and plant uptake

    Get PDF
    Macronutrient delivery to plants, particularly nitrogen, is problematic because of losses occurring during fertilization. Currently, nanotechnology is being considered as a solution to improving nutrient use efficiency. In this study, we report the synthesis and plant uptake of two plant nutrient nanocomposites based on urea coated hydroxyapatite (UHA) and potassium encapsulated into (i) a nanoclay, montmorillonite (MMT) or (ii) cavities present in Gliricidia sepium stem resulting in a wood chip containing macronutrients. Soil leaching behaviour, efficacy and plant uptake of the nutrients were tested in a pot experiment using Festuca arundinacea during a period of 60 weeks. Two nanocomposites displayed slow release behaviour particularly for nitrogen, in soil leaching tests compared to the conventional formulations. Both nanoformulations displayed efficient plant nutrient uptake highlighting the improved nutrient use efficiency. These data clearly revealed that urea fabricated into its nanoscale provide platform for development of efficient fertilizer formulations

    Alarm Pheromones and Chemical Communication in Nymphs of the Tropical Bed Bug Cimex hemipterus (Hemiptera: Cimicidae)

    Get PDF
    The recent resurge of bed bug infestations (Cimex spp.; Cimicidae) and their resistance to commonly used pesticides calls for alternative methods of control. Pheromones play an important role in environmentally sustainable methods for the management of many pest insects and may therefore be applicable for the control of bed bugs. The tropical bed bug, Cimex hemipterus, is a temporary ectoparasite on humans and causes severe discomfort. Compared to the common bed bug, Cimex lectularius, little is known about the chemical signalling and pheromone-based behaviour of the tropical species. Here, we show that the antennal morphology and volatile emission of C. hemipterus closely resembles those of C. lectularius and we test their behavioural responses to conspecific odour emissions. Two major volatiles are emitted by male, female and nymph C. hemipterus under stress, (E)-2-hexenal and (E)-2-octenal. Notably, nymph emissions show contrasting ratios of these compounds to adults and are further characterized by the addition of 4-oxo-(E)-2-hexenal and 4-oxo-(E)-2-octenal. The discovery of this nymph pheromone in C. hemipterus is potentially the cause of a repellent effect observed in the bio-tests, where nymph odours induce a significantly stronger repellent reaction in conspecifics than adult odours. Our results suggest that pheromone-based pest control methods developed for C. lectularius could be applicable to C. hemipterus, with the unique nymph blend showing promising practical properties

    Hypothermia for encephalopathy in low and middle-income countries (HELIX): Study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: Therapeutic hypothermia reduces death and disability after moderate or severe neonatal encephalopathy in high-income countries and is used as standard therapy in these settings. However, the safety and efficacy of cooling therapy in low- and middle-income countries (LMICs), where 99% of the disease burden occurs, remains unclear. We will examine whether whole body cooling reduces death or neurodisability at 18-22 months after neonatal encephalopathy, in LMICs. METHODS: We will randomly allocate 408 term or near-term babies (aged ≤ 6 h) with moderate or severe neonatal encephalopathy admitted to public sector neonatal units in LMIC countries (India, Bangladesh or Sri Lanka), to either usual care alone or whole-body cooling with usual care. Babies allocated to the cooling arm will have core body temperature maintained at 33.5 °C using a servo-controlled cooling device for 72 h, followed by re-warming at 0.5 °C per hour. All babies will have detailed infection screening at the time of recruitment and 3 Telsa cerebral magnetic resonance imaging and spectroscopy at 1-2 weeks after birth. Our primary endpoint is death or moderate or severe disability at the age of 18 months. DISCUSSION: Upon completion, HELIX will be the largest cooling trial in neonatal encephalopathy and will provide a definitive answer regarding the safety and efficacy of cooling therapy for neonatal encephalopathy in LMICs. The trial will also provide important data about the influence of co-existent perinatal infection on the efficacy of hypothermic neuroprotection. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02387385. Registered on 27 February 2015

    Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As insecticide resistance may jeopardize the successful malaria control programmes in the Mekong region, a large investigation was previously conducted in the Mekong countries to assess the susceptibility of the main malaria vectors against DDT and pyrethroid insecticides. It showed that the main vector, <it>Anopheles epiroticus</it>, was highly pyrethroid-resistant in the Mekong delta, whereas <it>Anopheles minimus sensu lato </it>was pyrethroid-resistant in northern Vietnam. <it>Anopheles dirus sensu stricto </it>showed possible resistance to type II pyrethroids in central Vietnam. <it>Anopheles subpictus </it>was DDT- and pyrethroid-resistant in the Mekong Delta. The present study intends to explore the resistance mechanisms involved.</p> <p>Methods</p> <p>By use of molecular assays and biochemical assays the presence of the two major insecticide resistance mechanisms, knockdown and metabolic resistance, were assessed in the main malaria vectors of the Mekong region.</p> <p>Results</p> <p>Two FRET/MCA assays and one PCR-RFLP were developed to screen a large number of <it>Anopheles </it>populations from the Mekong region for the presence of knockdown resistance (<it>kdr</it>), but no <it>kdr </it>mutation was observed in any of the study species. Biochemical assays suggest an esterase mediated pyrethroid detoxification in <it>An. epiroticus </it>and <it>An. subpictus </it>of the Mekong delta. The DDT resistance in <it>An. subpictus </it>might be conferred to a high GST activity. The pyrethroid resistance in <it>An. minimus s.l</it>. is possibly associated with increased detoxification by esterases and P450 monooxygenases.</p> <p>Conclusion</p> <p>As different metabolic enzyme systems might be responsible for the pyrethroid and DDT resistance in the main vectors, each species may have a different response to alternative insecticides, which might complicate the malaria vector control in the Mekong region.</p
    • …
    corecore