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Abstract 35 

The carbon accounting model FullCAM is used in Australia’s National Greenhous Gas 36 

Inventory to provide estimates of carbon stock changes and emissions in response to 37 

deforestation and afforestation / reforestation. FullCAM-predicted above-ground woody 38 

biomass is heavily influenced by the parameter M, which defines the maximum upper limit to 39 

biomass accumulation for any location within the Australian continent. In this study we 40 

update FullCAM’s M spatial input layer through combining an extensive database of 5,739 41 

site-based records of above-ground biomass (AGB) with the Random Forest ensemble 42 

machine learning algorithm, with model predictions of AGB based on 23 environmental 43 

predictor covariates. A Monte-Carlo approach was used, allowing estimates of uncertainty to 44 

be calculated. Overall, the new biomass predictions for woodlands, with 20-50% canopy 45 

cover, were on average 49.5±1.3 (s.d.) t DM ha-1, and very similar to existing model 46 

predictions of 48.5 t DM ha-1. This validates the original FullCAM model calibrations, which 47 

had a particular focus on accounting for greenhouse gas emissions in Australian woodlands. 48 

In contrast, the prediction of biomass of forests with a canopy cover >50% increased 49 

significantly, from 172.1 t DM ha-1, to 234.4±5.1 t DM ha-1. The change in forest biomass 50 

was most pronounced at sub-continental scales, with the largest increases in the states of 51 

Tasmania (166 to 351±22 t DM ha-1), Victoria (201 to 333±14 t DM ha-1), New South Wales 52 

(210 to 287±9 t DM ha-1), and Western Australia (103 to 264±14 s.d. t DM ha-1). Testing of 53 

model predictions against independent data from the savanna woodlands of northern 54 

Australia, and from the high biomass Eucalyptus regnans forests of Victoria, provided 55 

confidence in the predictions across a wide range of forest types and standing biomass. When 56 

applied to the Australian Government’s National Inventory land clearing accounts there was 57 

an overall increase of 6% in continental emissions over the period 1970-2016. Greater 58 

changes were seen at sub-continental scales calculated within 6° x 4° analysis tiles, with 59 

differences in emissions varying from -21% to +35%. Further testing is required to assess the 60 

impacts on other land management activities covered by the National Inventory, such as 61 

reforestation; and at more local scales for sequestration projects that utilise FullCAM for 62 

determining abatement credits.   63 

 64 

 65 

Keywords: Forest biomass; Random forest; Carbon accounting; national greenhouse gas 66 

inventory. 67 

  68 
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1. Introduction 69 

FullCAM (Full Carbon Accounting Model) is a freely available software system for tracking 70 

greenhouse gas emissions and changes in carbon stocks associated with land use and 71 

management in Australian agricultural and forest systems (Richards 2001; Richards and 72 

Brack, 2004; Richards and Evans 2004; Brack et al. 2006; Waterworth et al. 2007). It is 73 

applied at the national scale for land sector greenhouse gas emissions accounting (Australian 74 

Government 2018), and at the local scale for monitoring and reporting carbon sequestration 75 

projects, such as revegetation and the management of regrowth (Paul et al. 2015a,b).  76 

FullCAM predicts the accumulation of above-ground biomass (AGB) in woody vegetation 77 

using a hybrid of empirical and process-based modelling via the implementation of the Tree 78 

Yield Formula (TYF; Waterworth et al. 2007). The process-based modelling component 79 

utilises the forest growth model 3-PG (Landsberg and Waring, 1997) to derive a 80 

dimensionless index (the Forest Productivity Index, or FPI) that summarises potential site 81 

productivity for any given location based on the Normalised Difference Vegetation Index 82 

(NDVI), soil fertility, vapour pressure deficit, soil water content, and temperature (Kesteven 83 

and Landsburg 2004). The empirical component is a statistical relationship between field-84 

based observations of AGB (from minimally disturbed stands) and the FPI (Richards and 85 

Brack 2004). This relationship is used to calculate the parameter M (the predicted maximum 86 

AGB for a given FPI), and is given by  87 

𝑀𝑀 = �6.011 × √𝐹𝐹𝐹𝐹𝐹𝐹 − 5.291�
2
.      Equation 1 88 

Parameter M is constant for any location in Australia, and is embedded within the FullCAM 89 

database as a spatial input layer with a resolution of 0.0025 degrees (or approximately 250 90 

m). Computationally, M exerts a strong influence on forest growth, affecting the rate of AGB 91 

accumulation, as well as defining the upper maximum biomass limit. M is also an important 92 

ecosystem property, with links to environmental productivity as well as a being a key 93 

indicator of ecosystem structure.  94 

Over recent years evidence has accumulated that predictions of M for some vegetation types 95 

were biased, particularly for higher-biomass temperate forests, with lower M than 96 

observations would suggest (Montagu et al. 2003; Waterworth et al. 2007; Wood et al. 2008; 97 

Lowson 2008; Keith et al. 2010; Roxburgh et al. 2010; Fensham et al. 2012; Preece et al. 98 

2012). The presence of such bias may be due to the initial focus during FullCAM 99 

development on estimating carbon emissions and sequestration within Australia’s woodland 100 

ecosystems, due to their ongoing active management. The forest types represented in the 101 
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original field-based biomass estimates used in the relationship to predict M (Equation 1) had 102 

a strong representation of woodlands, but with <10% of observations from higher-biomass (> 103 

250 t DM ha-1) temperate forests. 104 

Since the development of FullCAM there has been a large increase in the availability of 105 

forest biomass data from across Australia, including from relatively undisturbed high biomass 106 

temperate forests. It was therefore timely to explore how these new data can be used to 107 

improve the estimation of M. The aim of this study was to use these new datasets to update 108 

FullCAM’s M layer, and thus improve the accuracy of predictions of woody biomass growth 109 

for Australian woodlands and forests, and hence, Australia’s National Greenhouse Gas 110 

Inventory. 111 

2. Methods 112 

Whilst it is possible to create de novo a new replacement biomass layer, by e.g. re-fitting the 113 

existing FPI vs observed biomass relationship on which the existing estimates of M are based 114 

(Equation 1), the approach adopted here was to update rather than replace the current M 115 

layer. This was to maintain continuity and consistency with the existing FullCAM modelling 116 

environment, and to allow new data to be applied only to regions with adequate data 117 

representation.  118 

The detailed analysis steps are shown in Figure 1, and can be summarised as follows: 119 

1. Identify site biomass records that fulfil the criteria of being minimally disturbed, 120 

consistent with the definition of maximum biomass, M.  121 

2. For each record i, calculate the ratio 𝜆𝜆𝑖𝑖  122 

   𝜆𝜆𝑖𝑖 = 𝑀𝑀𝑖𝑖
𝑂𝑂𝑖𝑖

,      Equation 2 123 

where Mi is the current prediction of maximum biomass (Equation 1), and Oi is the 124 

field observation. 125 

3. Use the Random Forest machine learning algorithm (Brieman 2001) to statistically 126 

model and predict 𝜆𝜆 across the continent, using a range of climatic and edaphic 127 

variables.  128 

4. Update the existing M layer to M’ by multiplying by the model-predicted 𝜆𝜆 129 

  𝑀𝑀′ = λ𝑀𝑀      Equation 3 130 

2.1 Database of above-ground biomass observations 131 

The primary source of AGB observation data was the TERN/Auscover National Biomass 132 

Library (NBL), available at http://www.auscover.org.au/purl/biomass-plot-library. This 133 
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library is a collation of stem inventory and biomass estimates compiled from federal, state 134 

and local government departments, universities, private companies and other agencies. The 135 

biomass library contains (as of December 2017) 14,453 sites, 887,639 individual tree 136 

diameter measurements (> 5cm), and 1,467 species. 137 

For inclusion in the analysis, the AGB estimates were required to represent predominantly 138 

mature and undisturbed vegetation (i.e. vegetation that has been minimally impacted by 139 

anthropogenic disturbances, and has not had a recent natural disturbance such as a wildfire or 140 

cyclone). Because not all sites within the NBL were located in vegetation that could be 141 

considered ‘mature’, it was first necessary to filter the database and exclude those 142 

observations that were most likely collected from disturbed vegetation. This was achieved by 143 

collating ancillary spatial datasets at both a national and state level that identified areas within 144 

which forests were more likely to be undisturbed (such as conservation lands), and also to 145 

identify areas where disturbance was more likely, for example areas subject to multiple use, 146 

including timber harvesting (Supplementary Data: Appendix A). Information was also 147 

gathered from the custodians of the NBL data where this indicated a measurement was 148 

located in disturbed or undisturbed (often referred to as remnant) vegetation. Records were 149 

also excluded if the observations were non-representative of the broader landscape, such as a 150 

number of Tasmanian records that specifically targeted forested areas with higher than 151 

average biomass (labelled ‘LIMA’ and ‘LIMI’ in the database; D. Mannes pers. comm.). A 152 

total of 5,739 site records remained following this filtering (Table 1). To provide an 153 

additional check of the temporal continuity of forest cover, spatial forest cover mapping 154 

(>20% cover) based on 25 Landsat images extending back to the 1970’s were used to confirm 155 

woody vegetation cover over the period, thus indicating the absence of major disturbance 156 

(Australian Government 2018). Forest cover was defined as the mode within a 3 ×3 pixel 157 

window (approximately 75 m × 75 m) centred on the observation.  158 

Preliminary analyses suggested improved empirical model performance could be obtained by 159 

stratifying the data and running separate statistical models based on two broad vegetation 160 

types corresponding to ‘Forests’ (with canopy cover > 50%) and ‘Woodlands’ (with canopy 161 

covers between 20‒50%). The classification of sites within the database was based on forest 162 

and woodland cover as defined by the Australian National Forest Inventory (ABARES 2014).  163 

2.2 Vegetation classification for model prediction 164 

Because M represents biomass at forest maturity, the spatial interpolation of the statistical 165 

models should represent the potential vegetation that an area could support, not the current 166 

vegetation distribution which reflects past land management, such as clearing of woody 167 
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vegetation. The spatial interpolation was therefore based on the NVIS v4.2 1750 Major 168 

Vegetation Subgroups (MVS) classification (NVIS 2016), which maps the extent of 169 

Australia’s major vegetation types prior to extensive land clearing, at a 100 m resolution. 170 

The NVIS subgroup for each of the 5,739 records was extracted, and any subgroup that was 171 

represented by 50 observations or more was included within the extent of the revised 172 

mapping calculation. The Forest and Woodland predictive models were applied on a 173 

subgroup-by-subgroup basis according to Table 2. In addition to the above criteria, data 174 

limitations restricted the extents of MVS classes 20, 27 and 45 (Table 2) to eastern Australia 175 

only (i.e. east of 132○ longitude); and a small number of ‘Forest’ areas that fell outside the 176 

600 mm annual rainfall isocline were reclassified as ‘Woodland’, recognising that arid 177 

‘forests’ are closer to woodlands in terms of biomass and structure. Finally, a 3×3 majority 178 

smoothing filter was applied to the classification to remove isolated grid cells and gaps. The 179 

final extent (Figure 2) defines the areas within which the existing M estimates were updated 180 

(‘Included forests’, and ‘Included woodland’), and the areas with insufficient data and thus 181 

where the current M estimates were retained (‘Excluded/non-woody’). 182 

2.3 Ensemble machine learning regression modelling with Random Forest 183 

The analysis used a machine learning regression method to model, for each of the 5,739 data 184 

points, the difference (or ‘residual’) between the current FullCAM estimates of M, and the 185 

NBL biomass estimates, defined as the ratio λ (Equation 2). Predictions of λ were then 186 

interpolated spatially and used to update M to M’ (Equation 3). 187 

The highly variable nature of the biomass data precluded the use of traditional statistical 188 

techniques, such as multiple regression, due to serious violation of the assumptions of 189 

normality and variance homogeneity. To overcome this, the Random Forest machine learning 190 

algorithm was used as the basis for prediction (Brieman 2001). This method is based on 191 

random re-sampling of the data followed by the fitting of binary ‘decision trees’ that seek to 192 

minimise the error between observations and predictions. There were 23 predictor variables 193 

in the analysis (Table 3), comprising continental maps of soil carbon content (Viscarra Rossel 194 

et al. 2014), elevation (Jarvis et al. 2008), and 21 ‘WorldClim’ v1.4 climate factors (Hijmans 195 

et al. 2005) obtained from the WorldClim database (http://www.worldclim.org). Continuous 196 

maps of predictor variables were required to allow spatial interpolation of the resulting 197 

models. Latitude and longitude were also initially included as predictor variables to account 198 

for unexplained spatial variability, however they were excluded from the final analysis as 199 

they tended to lead to overfitting and the introduction of spatial artefacts. Model results were 200 

spatially interpolated using the 23 predictor variables at a resolution of 0.01 degrees, or 201 
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approximately 1km. For reporting of spatial results, all layers were first transformed into 202 

Lamberts equal area projection prior to calculation. 203 

Model fitting was based on 1,000 Random Forest regression decision trees, with model 204 

predictions calculated as the median prediction over all 1,000 trees (Meinshausen 2006). As 205 

described in Section 2.1, initial exploration of the data indicated better model performance 206 

could be obtained by stratifying the data and running separate Random Forest models for the 207 

Woodland and Forest vegetation types.  208 

A Monte-Carlo approach was used to assess the prediction error of the model fits, with the 209 

data randomly split into a 70% subset for model fitting, and a 30% subset that was excluded 210 

and retained for independent validation (Figure 1). One hundred such data splits were made, 211 

with separate ‘Forest’ and ‘Woodland’ Random Forest models fitted to each of the 100 212 

iterations, allowing the mean and standard deviation of results across the 100 replicates to be 213 

calculated. The data was randomly split by Constrained Latin Hypercube (Minasny and 214 

McBratney 2006), to ensure representativeness across the predictor variable distributions 215 

between the calibration and the validation subsets.  216 

For both the calibration and validation datasets four fit statistics were calculated, each 217 

summarising different aspects of the model performance. The first two summarise the main 218 

aspects of model accuracy; bias (quantified as Mean Absolute Error (ME)), and precision 219 

(quantified as the Root Mean Squared Error (RMSE)). In addition, model efficiency (EF, 220 

Nash and Sutcliffe 1970) and Lin’s concordance correlation coefficient (LCC, Lin 2000) 221 

were calculated to provide overall assessments of model performance. EF is given by  222 

𝐸𝐸𝐹𝐹 = 1 − ∑ (𝑂𝑂𝑖𝑖−𝐸𝐸𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑂𝑂𝑖𝑖−𝑂𝑂�)2𝑛𝑛
𝑖𝑖=1

      Equation 4 223 

where Oi is the observed value of record i, Ei is the predicted value for record i, and 𝑂𝑂� is the 224 

mean of the observations. A model efficiency of 1.0 indicates perfect prediction, and a value 225 

of 0.0 indicates the predictions are no better than the global mean of the observations. LCC is 226 

given by:  227 

𝐿𝐿𝐿𝐿𝐿𝐿 = 2𝑆𝑆𝑂𝑂𝑂𝑂
2

𝑆𝑆𝑂𝑂
2+𝑆𝑆𝑂𝑂

2+(𝑂𝑂�−𝐸𝐸�)2      Equation 5 228 

Where 𝑆𝑆𝑂𝑂2 and 𝑆𝑆𝐸𝐸2 are the variance of the observations and predictions respectively, 𝑆𝑆𝑂𝑂𝐸𝐸2  is the 229 

covariance, and 𝑂𝑂� and 𝐸𝐸� are the mean of the observations and predictions respectively. LCC 230 

is an index that measures the agreement between predictions and the 1:1 line, and is scaled 231 

between -1.0 and 1.0, with 1.0 indicating complete concordance. 232 
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Spatial autocorrelation 233 

Because the NBL comprises a heterogeneous mixture of data collected at a range of spatial 234 

scales, a concern for the analysis was the clustering of sample points within close proximity 235 

to one another. Such clustering has the potential to invalidate the assumption of independence 236 

amongst observations, leading to bias in the predictor models. To address this the spatial 237 

correlation of sites was quantified, with the results suggesting minimal correlations (< 0.2) at 238 

distances between sites greater than approximately 10 km (Supplementary Data; Fig. A). To 239 

reduce the effects of spatial non-independence the data were first balanced prior to analysis 240 

through the method of bootstrap up-sampling (Kuhn et al. 2018), thus ensuring equality in the 241 

number of observations at the scale of 10 km x 10 km. Results from analyses conducted both 242 

with and without spatial up-sampling showed similar overall predictive performance, 243 

although with lower bias when the data were first spatially balanced. 244 

All analyses were performed within the R statistical modelling environment (R Core Team 245 

2016). Random Forest model fitting was performed using the R library ‘quantregForest’ 246 

(Meinshausen 2016); conditional latin hypercube sampling was performed using the ‘cLHS’ 247 

library (Roudier 2011), and the ‘caret’ library function ‘upSample’ was used to spatially 248 

balance the data (Kuhn et al. 2018). All spatial mapping analyses were performed using the 249 

libraries ‘raster’ (Hijmans 2016) and ‘rgdal’ (Bivand et al. 2016). 250 

2.4 Model testing 251 

In addition to the analysis of the hold-out validation records, that provide an internal estimate 252 

of the prediction error of the models when applied to new observations, the model predictions 253 

were also compared against two independent datasets that were not included in the analysis. 254 

In the first, predictions of M’ were compared with the analysis of Cook et al. (2015), who 255 

estimated woody AGB for 23 biogeographic regions across northern Australia. This provided 256 

the opportunity to compare estimates of M and M’ against an extensive set of biomass 257 

estimates for arid and savanna ecosystems. The second dataset comprised 78 observations of 258 

AGB in old-growth (≥ 250 year old) Eucalyptus regnans forests from the state of Victoria 259 

(Volkova et al. 2018). These forests are among the most biomass dense globally (Keith et al. 260 

2009), and provide an opportunity to compare model predictions with independent 261 

observations collected within a forest type known to be under-predicted by the current 262 

estimates of M.  263 

The Random Forest model predictions were also compared against other published modelled 264 

estimates of biomass for the Australian continent. Although this is a weaker test than 265 

comparing model predictions against empirical data, such cross-model comparisons are a 266 
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useful tool for benchmarking, and for assessing overall congruence amongst different 267 

approaches. Four models were compared; the BiosEquil model of Raupach et al. (2001), the 268 

VAST 2.0 model of Barrett (2002), the TMSC model of Berry & Roderick (2006), and the 269 

BIOS2 model of Haverd et al. (2013). For these comparisons, where necessary total living 270 

biomass was converted to AGB assuming a root:shoot ratio of 0.25, and biomass carbon was 271 

transformed to dry mass by multiplying by 2.0. 272 

 273 

Results 274 

3.1 Above-ground biomass database 275 

Identifying biomass records that reflect potential maximum biomass, or biomass that has 276 

been minimally disturbed, is problematic given much of Australia is subject to regular 277 

disturbance such as fire, cyclones (in the far north), and with extensive anthropogenic 278 

modification such as clearing, grazing, timber harvesting and prescribed burning (Raison et 279 

al. 2003). The approach adopted here was to combine multiple lines of evidence to exclude 280 

sites most likely affected by prior disturbance, which included querying the source metadata 281 

and confirming with data custodians the status of particular records; the use of spatial data 282 

quantifying known disturbances such as harvesting; the use of tenure maps to identify areas 283 

least likely to be subject to anthropogenic disturbance; and use of the historical satellite 284 

record to confirm continuity of vegetation cover over time. We note that none of these 285 

methods are perfect, and that the theoretical ideal of vegetation at maximum biomass is likely 286 

very rarely, if ever, met in reality. The result of the above filtering was a reduction of the 287 

initial records by approximately 60%, from 14,453 to 5739.  288 

For the development of the existing M layer, Richards and Brack (2004) determined forest 289 

stand age from disturbances detected from 12 Landsat remotely sensed coverages collected 290 

between 1972 and 2002. A similar analysis conducted here, based on 25 coverages spanning 291 

the period 1972 to 2016, showed over 90% of records were classified as forest cover for more 292 

than 20/25 of the annual coverages, with over 75% showing continuous forest cover 293 

(Supplementary Data; Fig. B). Given the majority (>70%) of records that showed intermittent 294 

forest cover were located in woodlands rather than forests, changes in cover classification are 295 

likely due to temporal variability in woodland tree canopy cover. Uncertainty in the geo-296 

locations of the records and/or variability in satellite image quality may also contribute to this 297 

variability, although the forest cover detection based on a 3×3 window around the target 298 

locations was designed to minimise such errors. 299 

 300 
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3.2 Random Forest model performance 301 

The Random Forest model fit statistics, for both calibration (when the records were used as 302 

part of model fitting) and validation (when records were withheld from model fitting) were 303 

based on comparisons between observed biomass, and model predictions for each record. For 304 

calibration, estimates for each record were based on the average over the approximately 305 

70/100 replicates where each site was used for fitting; and for validation the average of the 306 

approximately 30/100 replicates where each site was withheld from fitting. An alternative 307 

analyses where a single Random Forest run utilising all 5,739 records and using the internally 308 

calculated out-of-bag (OOB) estimates for validation yielded almost identical results; 309 

however the Monte-Carlo approach adopted here additionally allowed spatial maps of 310 

uncertainty for the predicted M’ layer to be readily calculated. 311 

The overall predictions of λ when records were used for model calibration were unbiased 312 

(ME = 0.0), with a RMSE of 0.4 and high values of EF (0.93) and LCC (0.96) (Table 4), thus 313 

indicating strong overall agreement between observations and predictions (Figure 3a). When 314 

records were used for validation there was evidence for some bias (ME = 0.1) with lower 315 

precision, and correspondingly lower values for EF and LCC (Table 4; Figure 3b). Note for 316 

purposes of display the axes in Figures 3 and 4 are logarithmically transformed, but all model 317 

fitting and the calculation of the fit statistics was based on untransformed data. 318 

The fit statistics were also calculated for the final predicted maximum biomass estimate, M’ 319 

(Equation 3). This has the additional advantage of allowing equivalent statistics to be 320 

calculated for the current M layer. Comparison of the current M estimates with the 321 

observations shows an overall bias (under-prediction) of -35.3 t DM ha-1,  with a RMSE of 322 

239.1 t DM ha-1, and with low indices for the statistics quantifying overall fit (EF = 0.14; 323 

LCC = 0.25) (Table 4). This is reflected in the scatter of observed vs predicted biomass 324 

(Figure 4a), where the bias is particularly apparent for high biomass observations, with 325 

observations greater than 500 t DM ha-1 all predicted to be lower than 500 DM ha-1 (Figure 326 

4a). In contrast, the revised M’ modelled estimates for the calibration analysis are effectively 327 

unbiased (ME = -0.2 t DM ha-1), and the RMSE has approximately quartered, from 239 t DM 328 

ha-1 down to 62 t DM ha-1, with correspondingly high values for EF (0.94) and LCC (0.97) 329 

(Table 4). When applied to the validation data, there was evidence for a bias of -8 t DM ha-1, 330 

and a corresponding reduction in precision, with a RMSE of 200 t DM ha-1. At the continental 331 

scale, this bias equates to an error of approximately 5% under-prediction. 332 

Of the 23 predictor variables, soil organic carbon was the most important explanatory 333 

variable for the Woodlands model, and precipitation of the driest month for the forest model 334 
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(Supplementary data; Fig. C). Variable importance was quantified as the percent increase in 335 

the model fit error following the removal of the target variable. 336 

 337 

3.3 Model testing against independent data 338 

For much of northern Australia the revised estimates of maximum biomass (M’) were lower 339 

than predicted by the current M (Figure 5). This reduction is consistent with the data of Cook 340 

et al. (2015), that also showed generally lower biomass compared with existing M. Overall, 341 

the estimates of revised M’ are now closer to the values reported by Cook et al. (2015), with 342 

the average of the revised estimate (31±1 t DM ha-1) falling between the estimates based on 343 

the two calculation methods of Cook et al. (2015) (25 – 33 t DM ha-1). This contrasts with the 344 

current M estimate of 37 t DM ha-1. At the scale of individual analysis regions there were 345 

some discrepancies, with M’ predictions ranging from -57% to 43% of observations, 346 

depending on the region (Figure 5b). 347 

 348 

For the high biomass Eucalyptus regnans forests of Victoria the current mean biomass 349 

predicted by M is 266 t DM ha-1 (and never predicted to exceed 500 t DM ha-1), with a 350 

relatively narrow range of values and a large peak in the frequency distribution in the 250 – 351 

350 t DM ha-1 class (Figure 6b). This is well below the observed biomass, with a mean of 886 352 

t DM ha-1, and with some individual observations exceeding 1500 t DM ha-1. The revised M’ 353 

estimates show a frequency distribution that has shifted to overlap with those of the 354 

observations, with the mean biomass increasing from 266 t DM ha-1 to 656 t DM ha-1, and 355 

with predictions up to 1500 t DM ha-1 (Figure 6). Although the frequency distribution of M 356 

and M’ closely align up to approximately 1200 t DM ha-1 (Kolmogorov-Smirnoff test: P = 357 

0.061), across the full range of site biomass there are significantly fewer very high biomass 358 

records than observed (Kolmogorov-Smirnoff test: P < 0.001). 359 

 360 

When compared against four alternative continental-scale modelled estimates of biomass, M’ 361 

was within the reported range for the broad forest and woodland vegetation classes depicted 362 

in Figure 4 (Table 5). The mean M’ continental Forest biomass of 234 t DM ha-1 compares 363 

with 210-278 t DM ha-1 across the four models, and the mean woodland estimate of 50 t DM 364 

ha-1 compares with 49-54 t DM ha-1. 365 

 366 

3.4 Spatial prediction of above-ground biomass 367 

A comparison of the original above-ground biomass layer (M, Figure 7a) with the revised 368 

layer (M’, Figure 7c) shows the major differences to be in the temperate forest ecosystems, 369 
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particularly in Western Australia, Eastern Tasmania, Victoria and New South Wales where 370 

there have been significant increases in predicted AGB. Areas where M’ has declined relative 371 

to M include much of northern Australia and far north Queensland (Figure 7b; see also Figure 372 

5). 373 

These trends are more apparent when summarised on a state-by-state basis, either through 374 

comparison of the mean biomass across the 5739 records used in the analysis, which shows 375 

M, M’, as well as the field observations (Figure 8), or through comparison when averaged 376 

spatially (Figure 9).  377 

 378 

At the continental scale there was a slight bias in the predictions of the independent 379 

validation subset of the data, in the order of 5% under-prediction, driven by the higher-380 

biomass ‘forests’ (Figure 8a). Overall, there was a significant improvement in the agreement 381 

between the model predictions and the observations compared to the current M estimates. 382 

Discussion 383 

Woody biomass growth within FullCAM is strongly influenced by the parameter M, which 384 

defines the maximum upper limit to biomass accumulation at a given location. As noted in 385 

the introduction several analyses have suggested M currently under-predicts biomass in some 386 

forest types, particularly temperate forests. For example, Waterworth et al. (2007) had to 387 

apply growth modifiers to increase the biomass predictions of FullCAM for plantation 388 

forests. Similarly, for mallee and environmental plantings Paul et al. (2015a, b) addressed 389 

FullCAM’s biomass under-prediction through modifying FullCAM parameters other than M 390 

directly. Here we provide a more general solution by developing an updated biomass layer, 391 

M’, that can be applied to any location within Australia.  392 

Overall, the Random Forest statistical modelling and the resulting updated biomass layer M’ 393 

improved the current maximum biomass predictions, with bias at the continental scale 394 

reducing from -35 t DM ha-1 down to negligible levels for the fitted model, and down to -8.0 t 395 

DM ha-1 (or approximately 5% error on average) when the model is applied operationally to 396 

new data (Table 4). The source of this remaining bias is uncertain, but is possibly due to 397 

over-fitting of the Random Forest algorithm to the calibration data. Precision in the biomass 398 

predictions improved from 239 t DM ha-1 down to 62 t DM ha-1 for the calibration data, and 399 

down to 201 t DM ha-1 when applied to new data (Table 4). The improvements in model 400 

prediction were particularly marked for forests with AGB biomass > 500 t DM ha-1.    401 
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At the continental scale, and for the lower-biomass woodland vegetation with a canopy cover 402 

20‒50%, there were minimal differences in predicted biomass between the new M’ (49.5±1.3 403 

t DM ha-1, mean and s.d.) and the existing M (48.5 t DM ha-1)  (Figure 9a). This provides 404 

strong support for the original FullCAM calibrations, where the focus was primarily on 405 

woodland ecosystems due to their active management, and thus importance for national 406 

greenhouse gas accounting. In contrast, predictions of forest biomass (with canopy cover 407 

>50%) greatly increased between M and M’, from a continental average of 172 t DM ha-1 to 408 

234±5.1 t DM ha-1 (Figure 9a). For individual states, increases in predicted maximum forest 409 

biomass were typically much greater; the original M for Western Australia was 103 t DM ha-410 
1, compared with 264±14 t DM ha-1 under the revised analysis. Similar increases were found 411 

for Tasmania (166 to 351±22 t DM ha-1), Victoria (201 to 333±14 t DM ha-1) and New South 412 

Wales (210 to 287±9 t DM ha-1).    413 

When compared against AGB predictions from four independent continental-scale models, 414 

the M’ estimates for all vegetation classes (forest, woodland and excluded/non-woody) fell 415 

within the range of the published models (Table 5), noting that forests with a canopy cover 416 

>50% were initially outside of the range prior to updating (172.1 t DM ha-1, compared to 417 

model predictions of 210 - 278 t DM ha-1). 418 

The new M’ biomass predictions also compared favourably when tested against independent 419 

data not included in the modelling procedure. For Northern Australia the decline in predicted 420 

biomass from the current M estimates (37 t DM ha-1) to M’ (31±1 t DM ha-1) is consistent 421 

with the analysis of Cook et al. (2015), who gave an overall estimate of 25 - 33 t DM ha-1. 422 

The upper estimate of Cook et al. (2015) is based on an assumed stem diameter distribution 423 

that is representative of a more mature forest structure (their ‘Plot M’ analysis), and is thus 424 

likely to be closer to the assumed minimal disturbance assumption of the M parameter.  425 

For the old-growth high biomass Eucalyptus regnans forests of Victoria the average AGB 426 

across the field observations was 886 t DM ha-1, which is similar to the heartwood-decay 427 

adjusted estimate of Sillett et al. (2015) of 935 t DM ha-1 and the catchment-scale mean of 428 

1002 t DM ha-1 of Keith et al. (2009), and is within the range reported by Dean et al. (2004) 429 

for the same forest type (840 – 1305 t DM ha-1, varying by site index). The revised M’ 430 

estimate increased the mean predicted biomass of the E. regnans from 266 to 656±31 t DM 431 

ha-1, with a spatial distribution of values that shifted to be broadly consistent with the 432 

observations, though with a tendency to under-predict the highest biomass locations in the 433 

landscape (Figure 6b). This under-estimation likely results from the constraints imposed by 434 

simultaneously optimising all possible forest types within Australia. Higher accuracy at the 435 
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local scale could be achieved by further sub-dividing the forest and woodland classes, though 436 

data limitations for many vegetation types would be a barrier to the general application of 437 

such an approach.  438 

In a study concentrating solely on the forests south-east Australia, Keith et al. (2010) 439 

predicted a mean maximum AGB of approximately 434 t DM ha-1, which is 28% higher than 440 

the 313 t DM ha-1 predicted by M’ for the combined forests of Tasmania, Victoria and New 441 

South Wales. Keith et al. (2010) discuss a number of sources of uncertainty that could 442 

potentially contribute to such a discrepancy, such as differences in the allometric models 443 

applied to estimate field biomass, the extent to which field data are representative of the 444 

diversity across the landscape, and the methods used to spatially extrapolate the data. An 445 

additional contributing factor could be differences in the spatial extents of the two studies. 446 

Given the broad scope of the NBL and the wide range of contributing data sources, it is also 447 

likely that residual impacts of historical anthropogenic disturbance are present in some of the 448 

records, which would tend to make our estimates conservative. 449 

FullCAM is primarily used for calculating greenhouse gas emissions from the land sector as 450 

part of national greenhouse gas reporting requirements (Australian Government 2018). 451 

Within this context, a thorough investigation of the impacts of updating the maximum 452 

biomass layer can only be made by embedding M’ within the FullCAM simulation 453 

environment, and running simulations that include not only the growth of AGB, but also the 454 

flow-on effects to the allocation of this new growth to stems, branches, bark, leaves and 455 

roots, and ultimately to the influence of clearing, harvesting or fire events on carbon pool 456 

dynamics, and the production and decay of debris and soil organic carbon. An initial 457 

investigation of the potential implications for changes in net ecosystem emissions between M 458 

and M’ resulting from deforestation and subsequent regrowth over the period 1970-2016 459 

showed an increase in emissions, at the continental scale, of 6%. However, at a regional level, 460 

with emissions reported within 6° x 4° analysis tiles, the differences ranged from a 35% 461 

increase in emissions (south-west Western Australia) to a 21% decrease (central-east 462 

Queensland). The overall low impact of the updated M’ at the continental scale is because 463 

most of the land clearing in Australia since 1970 has occurred in woodland ecosystems, and 464 

these systems showed little overall change between M and M’. Much larger differences would 465 

be expected in areas of reforestation of higher-biomass forests, or when accounts are 466 

calculated in the higher biomass forests of Australia.  467 

Applying the concept of maximum potential biomass is problematic for many Australian 468 

ecosystems due to the ubiquitous occurrence of fire and other disturbances that can lead to 469 
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mortality and the reduction of living biomass (Raison et al. 2003). This makes it difficult to 470 

identify and validate site-based data that has been minimally disturbed; and when undisturbed 471 

areas are identified there may be questions over how well they represent the broader 472 

landscape, particularly when they occur as remnant patches. Here we used a combination of 473 

different lines of evidence to filter the available database to exclude sites that were likely to 474 

have been recently disturbed. Ideally, sites would be individually investigated in detail to 475 

confirm their status, such as done by Raison et al. (2003) for the initial FullCAM calibrations. 476 

However, with over 14,000 site estimates currently available such detailed site-by-site 477 

investigations are impractical. There is thus a trade-off between including a small number of 478 

sites where the site history has been researched in detail, with the associated risk that they 479 

may be non-representative at the continental scale, and the inclusion of a broader sample such 480 

as adopted here, with the risk that some sites included for analysis may have been subject to 481 

historical disturbance, either natural or anthropogenic. The general agreement between the 482 

independent data of Cook et al. (2015) and Volkova et al. (2018) and M’ give us confidence 483 

that gross errors of classification have been avoided, but an extra layer of detailed checking, 484 

for example on a random subset of the 14,000 available records, would provide additional 485 

confidence in the results. 486 

Whilst the revised M’ was applicable to approximately 54% of the continent covered by 487 

woodlands and forests (Figure 2), there was insufficient data to adequately assess the current 488 

performance of M for the most arid regions, which includes large areas of the Australian 489 

rangelands, such as the hummock grasslands, and the mulga woodlands in the western half of 490 

the continent. The collation and assimilation of rangelands data, similar to the development 491 

of the NBL for woodlands and forests, would allow the analysis described here to be 492 

extended into these lower-biomass systems. Such an activity would provide additional 493 

support and confidence for the development of methods for managing rangelands for 494 

improved greenhouse gas outcomes.  495 

Further assessment of the implications of M’ when embedded within the FullCAM software 496 

environment are required. Although application to the deforestation account within the 497 

national greenhouse gas accounting system showed minimal impacts at the continental scale, 498 

this was due to minimal changes between M and M’ for the woodland systems within which 499 

most clearing and regrowth activity has taken place. The next steps for testing include similar 500 

analyses for other areas of the national accounts, such as reforestation and the 501 

sequestration/emissions associated with environmental plantings, and perform model re-502 

calibration as necessary. We further note that operationalising M’ within the current 503 
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FullCAM system has implications for vegetation that has already undergone separate 504 

calibration, such as mallee and environmental plantings. For such cases additional 505 

modifications to the FullCAM system will be required to avoid issues of ‘double calibration’. 506 

Further work is also required to investigate the potential impacts of updating M on those 507 

project activities under the Australian government’s Emissions Reduction Fund (ERF, 508 

Australian Government 2014) that use FullCAM for calculating sequestration credits. This 509 

will particularly involve activities associated with avoided deforestation, and the management 510 

of regrowth. 511 

Conclusions 512 

Maximum above-ground biomass (M) is a key parameter in the Australian Government’s 513 

land sector greenhouse gas accounting tool, FullCAM, affecting both the maximum biomass 514 

attainable by the model, and the rate of forest growth. M is also an important ecosystem 515 

property, with links to environmental productivity as well as being a key indicator of 516 

ecosystem structure. Here we updated the current FullCAM M layer through combining an 517 

extensive database of 5,739 site-based estimates of forest and woodland biomass with the 518 

Random Forest ensemble machine learning algorithm. Key improvements were in the 519 

prediction of temperate forest biomass, with biomass increasing continentally from 172.1 t 520 

DM ha-1 to 234.4±5.1 t DM ha-1, and with significant improvements in biomass prediction at 521 

sub-continental scales (Tasmania: 166 to 351±22 t DM ha-1; Victoria: 201 to 333±14 t DM 522 

ha-1; New South Wales: 210 to 287±9 t DM ha-1; and Western Australia: 103 to 264±14 s.d. t 523 

DM ha-1). In contrast, the biomass of lower productivity woodlands remained largely 524 

unchanged, from 48.5 t DM ha-1 to 49.5±1.3 t DM ha-1, thus validating the original FullCAM 525 

model calibrations which had a particular focus on accounting for greenhouse gas emissions 526 

in Australian woodlands. Comparison against independent datasets provided confidence in 527 

the model predictions across a wide range of forest types and standing biomass. Initial 528 

investigations into the implications of the new M layer for Australia’s national greenhouse 529 

gas accounts are reported. 530 
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 672 
 Forest Woodland Total 
New South Wales 661 791 1452 
Northern Territory 193 427 770 
Queensland 604 2073 2262 
Tasmania 920 66 986 
Victoria 101 55 156 
Western Australia 64 48 112 
South Australia 0 1 1 
Total 2543 3195 5739 

 673 

Table 1. Number of observations of above-ground biomass for each state and vegetation 674 
class. 675 

 676 

 677 

 678 
MVS 
Code 

Forest 
Class 

MVS Name 

1 F Cool temperate rainforest 
2 F Tropical or sub-tropical rainforest 
3 F Eucalyptus (+/- tall) open forest with a dense broad-leaved and/or tree-fern understorey 

(wet sclerophyll) 
4 F Eucalyptus open forests with a shrubby understorey 
5 F Eucalyptus open forests with a grassy understorey 
6 F Warm Temperate Rainforest 
54 F Eucalyptus tall open forest with a fine-leaved shrubby understorey 
60 F Eucalyptus tall open forests and open forests with ferns, herbs, sedges, rushes or wet 

tussock grasses 
62 F Dry rainforest or vine thickets 
7 W Tropical Eucalyptus forests and woodlands with a tall annual tussock grass understorey 
8 W Eucalyptus woodlands with a shrubby understorey 
9 W Eucalyptus woodlands with a tussock grass understorey 
10 W Eucalyptus woodlands with a hummock grass understorey 
12 W Callitris forests and woodlands 
13 W Brigalow (Acacia harpophylla) forests and woodlands 
14 W Other Acacia forests and woodlands 
18 W Eucalyptus low open woodlands with hummock grass 
20 W Mulga (Acacia aneura) woodlands and shrublands +/- tussock grass +/- forbs 
27 W Mallee with hummock grass 
45 W Mulga (Acacia aneura) open woodlands and sparse shrublands +/- tussock grass 
47 W Eucalyptus open woodlands with shrubby understorey 
48 W Eucalyptus open woodlands with a grassy understorey 

 679 

Table 2. Primary classification of NVIS Major Vegetation System (MVS) vegetation classes 680 
into Forests (F) and Woodlands (W). Additional modifications to the primary classification 681 
are described in the text. 682 
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 684 
Variable Description 
Alt Altitude (m a.s.l) 
SOC Soil organic carbon (t ha-1) 
tmax Mean monthly maximum temperature 
tmin Mean monthly minimum temperature 
Bio1 Annual Mean Temperature 
Bio2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 
Bio3 Isothermality (BIO2/BIO7) (* 100) 
Bio4 Temperature Seasonality (standard deviation *100) 
Bio5 Max Temperature of Warmest Month 
Bio6 Min Temperature of Coldest Month 
Bio7 Temperature Annual Range (BIO5-BIO6) 
Bio8 Mean Temperature of Wettest Quarter 
Bio9 Mean Temperature of Driest Quarter 
Bio10 Mean Temperature of Warmest Quarter 
Bio11 Mean Temperature of Coldest Quarter 
Bio12 Annual Precipitation 
Bio13 Precipitation of Wettest Month 
Bio14 Precipitation of Driest Month 
Bio15 Precipitation Seasonality (Coefficient of Variation) 
Bio16 Precipitation of Wettest Quarter 
Bio17 Precipitation of Driest Quarter 
Bio18 Precipitation of Warmest Quarter 
Bio19 Precipitation of Coldest Quarter 

 685 

Table 3. Independent variables used in the Random Forest ensemble machine learning 686 
regression modelling. 687 

 688 

 689 

 690 

 691 
 692 

Scope ME RMSE EF LCC 
λ - Calibration 0.0 0.4 0.93 0.96 
λ - Validation -0.1 1.3 0.26 0.52 
     
Original M -35.3 239.1 0.14 0.25 
M’ - Calibration -0.2 62.0 0.94 0.97 
M’ - Validation -8.0 200.7 0.40 0.62 

 693 

Table 4. Fit statistics between observations (n=5,739) and model predictions for λ, and for 694 
the current (M) and revised (M’) estimates for maximum above-ground biomass. 695 

 696 

 697 
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 698 
 699 
 700 
 701 
 702 

 M M’ BIOS21 TMS2 VAST 2.03 BiosEquil4 
Forest 172.1 234.4 

(5.1) 
209.7 217.5 221.3 278.2 

Woodland 48.5 49.5 
(1.3) 

52.1 53.9 49.3 50.2 

Excluded / non-woody 16.1 - 17.0 11.2 13.8 14.5 
 703 

Table 5. Predicted above-ground biomass (t DM ha-1) from four continental-scale models, 704 
and the estimates for M and M’. Values in parentheses for M’ are the standard deviations over 705 
100 replicate analyses. No ‘Excluded / non-woody’ value is given for M’, as the current M 706 
values are assumed for those areas. 1Haverd et al. (2013); 2Berry & Roderick (2006); 3Barrett 707 
(2002); 4Raupach et al. (2001). 708 
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 711 

 712 

Figure 1: Summary flowchart of analysis steps. 713 
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 715 

 716 

 717 

 718 

 719 

Figure 2: Vegetation classification used to spatially map the separate Forest and Woodland 720 
predictive models for calculating the revised maximum biomass layer M’. 721 
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 727 

 728 

Figure 3: Observed vs. Random Forest model-predicted λ for (a) the 5739 data points when 729 
utilised for model calibration; and (b) the 5739 data points when withheld for independent 730 
validation. Fit statistics are given in Table 4 731 
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 733 

 734 

 735 

 736 

Figure 4: Observed vs. Predicted above-ground biomass for each of the 5739 data points, for 737 
(a) the original FullCAM M estimates; and (b) and (c) the revised estimates M’ for the 738 
calibration and validation results through application of the modifier λ. Fit statistics are given 739 
in Table 4. 740 
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 742 
 743 

 744 
 745 
Figure 5: Comparison of the original and revised maximum above-ground biomass with the 746 
independent analysis of Cook et al. (2015). (a) the IBRA regions of Northern Australia (b). 747 
Aboveground biomass estimates for each IBRA region.  748 
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 750 
 751 

 752 

 753 

Figure 6. Comparison of the original and revised maximum above-ground biomass with the 754 
independent observational database of Volkova et al. (2018), of n=78 old-growth (>= 250 755 
year old) Eucalyptus regnans forest biomass sites in the Central Highlands area of Victoria. 756 
(a) Location map showing the distribution of Eucalyptus regnans in the central highlands 757 
region of Victoria. (b) Relative frequency distribution of biomass for the 78 old-growth 758 
observations, and for the original and revised model predictions of M. 759 
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 761 

 762 

Figure 7. (a) Original FullCAM maximum biomass layer (M, t DM ha-1). (b) Maximum 763 
biomass modifier layer (λ) predicted from the Random Forest model (dimensionless 764 
multiplier). (c) Revised maximum biomass layer, calculated from a x b (M’, t DM ha-1). (d) 765 
Coefficient of variation (standard deviation / mean) of M’, calculated over 100 Random 766 
Forest model fits. 767 

 768 

(a) (b) 

(c) (d) 



32 
 

 769 
 770 

Figure 8. Comparison of the mean above-ground biomass across the 5739 observed data 771 
points with the mean biomass from the original (M) and revised (M’) predictions of above-772 
ground biomass. South Australia is excluded due to lack of data. The number of 773 
observations for each state x vegetation type combination are given in Table 1. 774 
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 776 

Figure 9. Comparison of the spatially-averaged above-ground biomass for the original 777 
predictions (M) and the revised predictions (M’).  778 
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