121 research outputs found
Rectal artemisinins for malaria: a review of efficacy and safety from individual patient data in clinical studies
<p>Abstract</p> <p>Background</p> <p>Rectal administration of artemisinin derivatives has potential for early treatment for severe malaria in remote settings where injectable antimalarial therapy may not be feasible. Preparations available include artesunate, artemisinin, artemether and dihydroartemisinin. However each may have different pharmacokinetic properties and more information is needed to determine optimal dose and comparative efficacy with each another and with conventional parenteral treatments for severe malaria.</p> <p>Methods</p> <p>Individual patient data from 1167 patients in 15 clinical trials of rectal artemisinin derivative therapy (artesunate, artemisinin and artemether) were pooled in order to compare the rapidity of clearance of <it>Plasmodium falciparum </it>parasitaemia and the incidence of reported adverse events with each treatment. Data from patients who received comparator treatment (parenteral artemisinin derivative or quinine) were also included. Primary endpoints included percentage reductions in parasitaemia at 12 and 24 hours. A parasite reduction of >90% at 24 hours was defined as parasitological success.</p> <p>Results</p> <p>Artemisinin and artesunate treatment cleared parasites more rapidly than parenteral quinine during the first 24 hours of treatment. A single higher dose of rectal artesunate treatment was five times more likely to achieve >90% parasite reductions at 24 hours than were multiple lower doses of rectal artesunate, or a single lower dose administration of rectal artemether.</p> <p>Conclusion</p> <p>Artemisinin and artesunate suppositories rapidly eliminate parasites and appear to be safe. There are less data on artemether and dihydroartemisinin suppositories. The more rapid parasite clearance of single high-dose regimens suggests that achieving immediate high drug concentrations may be the optimal strategy.</p
Artemisinin-Naphthoquine versus Artemether-Lumefantrine for Uncomplicated Malaria in Papua New Guinean Children: An Open-Label Randomized Trial
© 2014 Laman et al. Artemisinin combination therapies (ACTs) with broad efficacy are needed where multiple Plasmodium species are transmitted, especially in children, who bear the brunt of infection in endemic areas. In Papua New Guinea (PNG), artemether-lumefantrine is the first-line treatment for uncomplicated malaria, but it has limited efficacy against P. vivax. Artemisinin-naphthoquine should have greater activity in vivax malaria because the elimination of naphthoquine is slower than that of lumefantrine. In this study, the efficacy, tolerability, and safety of these ACTs were assessed in PNG children aged 0.5–5 y.An open-label, randomized, parallel-group trial of artemether-lumefantrine (six doses over 3 d) and artemisinin-naphthoquine (three daily doses) was conducted between 28 March 2011 and 22 April 2013. Parasitologic outcomes were assessed without knowledge of treatment allocation. Primary endpoints were the 42-d P. falciparum PCR-corrected adequate clinical and parasitologic response (ACPR) and the P. vivax PCR-uncorrected 42-d ACPR. Non-inferiority and superiority designs were used for falciparum and vivax malaria, respectively. Because the artemisinin-naphthoquine regimen involved three doses rather than the manufacturer-specified single dose, the first 188 children underwent detailed safety monitoring. Of 2,542 febrile children screened, 267 were randomized, and 186 with falciparum and 47 with vivax malaria completed the 42-d follow-up. Both ACTs were safe and well tolerated. P. falciparum ACPRs were 97.8% and 100.0% in artemether-lumefantrine and artemisinin-naphthoquine-treated patients, respectively (difference 2.2% [95% CI -3.0% to 8.4%] versus -5.0% non-inferiority margin, p?=?0.24), and P. vivax ACPRs were 30.0% and 100.0%, respectively (difference 70.0% [95% CI 40.9%–87.2%], p<0.001). Limitations included the exclusion of 11% of randomized patients with sub-threshold parasitemias on confirmatory microscopy and direct observation of only morning artemether-lumefantrine dosing.Artemisinin-naphthoquine is non-inferior to artemether-lumefantrine in PNG children with falciparum malaria but has greater efficacy against vivax malaria, findings with implications in similar geo-epidemiologic settings within and beyond Oceania.Australian New Zealand Clinical Trials Registry ACTRN12610000913077.Please see later in the article for the Editors' Summary
A Randomised Controlled Trial to Assess the Efficacy of Dihydroartemisinin-Piperaquine for the Treatment of Uncomplicated Falciparum Malaria in Peru
Background. Multi-drug resistant falciparum malaria is an important health problem in the Peruvian Amazon region. We carried out a randomised open label clinical trial comparing mefloquine-artesunate, the current first line treatment in this region, with dihydroartemisinin-piperaquine. Methods and Findings. Between July 2003 and July 2005, 522 patients with P. falciparum uncomplicated malaria were recruited, randomized (260 with mefloquine-artesunate and 262 with dihydroartemisinin-piperaquine), treated and followed up for 63 days. PCR-adjusted adequate clinical and parasitological response, estimated by Kaplan Meier survival and Per Protocol analysis, was extremely high for both drugs (99.6% for mefloquine-artesunate and 98.4% and for dihydroartemisinin-piperaquine) (RR: 0.99, 95%CI [0.97-1.01], Fisher Exact p=0.21). All recrudescences were late parasitological failures. Overall, gametocytes were cleared faster in the mefloquine-artesunate group (28 vs 35 days) and new gametocytes tended to appear more frequently in patients treated with dihydroartemisinin-piperaquine (day 7: 8 ( 3.6%) vs 2 (0.9%), RR: 3.84, 95%CI [0.82-17.87]). Adverse events such as anxiety and insomnia were significantly more frequent in the mefloquine-artesunate group, both in adults and children. Conclusion. Dihydroartemisinin-piperaquine is as effective as mefloquine-artesunate in treating uncomplicated P. falciparum malaria but it is better tolerated and more affordable than mefloquine-artesunate (US18.65 on the local market). Therefore, it should be considered as a potential candidate for the first line treatment of P. falciparum malaria in Peru. Trial Registration. ClinicalTrials.gov NCT00373607 [http://www.clinicaltrials.gov/ct/show/NCT00373607]
Coartem®: the journey to the clinic
Artemisinin, from which the artemether component of Coartem®(artemether/lumefantrine, AL) is derived, is obtained from the plant sweet wormwood (Artemisia annua) which has been used for over 2,000 years as a Chinese herbal remedy. Artemisinin was first identified by Chinese researchers as the active anti-malarial constituent of A. annua and its derivatives were found to be the most potent of all anti-malarial drugs. Artemether acts rapidly, reducing the infecting parasite biomass by approximately 10,000-fold per asexual life cycle. Lumefantrine, the other active constituent of AL, acts over a longer period to eliminate the residual 100-100,000 parasites that remain after artemether is cleared from the body and thus minimizes the risk of recrudescence. The two agents have different modes of action and act at different points in the parasite life cycle and show a synergistic action against Plasmodium falciparum in vitro. The combination of artemether and lumefantrine reduces the risk of resistance developing to either agent, and to date there are no reports of resistance to AL combined therapy in the malaria parasite that infects humans. Following a unique partnership agreement between Chinese authorities and Novartis, the manufacturer of AL, over 20 sponsored clinical studies have been undertaken in various malaria endemic regions and in travellers. These trials have involved more than 3,500 patients (including over 2,000 children), and led to identification of a six-dose, three-day regimen as the optimal dosing strategy for AL in uncomplicated falciparum malaria. AL has consistently shown 28-day polymerase chain (PCR)-corrected cure rates greater than 95% in the evaluable population, meeting WHO recommendations. More recently, Novartis and the Medicines for Malaria Venture have worked in partnership to develop Coartem® Dispersible, a new formulation designed specifically to meet the specific needs of children with malaria. The dispersible tablets have shown similar high response rates to those observed with crushed standard tablets of AL. A partnership agreement between Novartis and WHO has seen over 250 million AL (Coartem®) treatments (75% for children) being distributed to malaria patients in developing countries without profit, supported by training programmes and educational resources
Subacute Sclerosing Panencephalitis in Papua New Guinean Children: The Cost of Continuing Inadequate Measles Vaccine Coverage
Subacute sclerosing panencephalitis (SSPE) is a disabling and usually fatal brain disorder that typically occurs 3–10 years after acute measles infection. Papua New Guinea (PNG) has particularly high rates of SSPE. We report 22 cases of PNG children presenting to the provincial referral hospital in Madang Province who probably contracted acute measles when <12 months of age during a national epidemic in 2002 and who developed SSPE 5–7 years later. Based on these cases, the estimated annual SSPE incidence in Madang province in 2007–2009 was 54/million population aged <20 years. Four sub-districts had an annual incidence >100/million population aged <20 years, the highest rates ever reported. Young PNG children do not respond well to measles vaccine. Because of this, efforts such as supplementary measles immunisation programs should continue in order to reduce the pool of non-immune older people surrounding the youngest and most vulnerable members of PNG communities
Multicentric assessment of the efficacy and tolerability of dihydroartemisinin-piperaquine compared to artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in sub-Saharan Africa
<p>Abstract</p> <p>Background</p> <p>The choice of appropriate artemisinin-based combination therapy depends on several factors (cost, efficacy, safety, reinfection rate and simplicity of administration). To assess whether the combination dihydroartemisinin-piperaquine (DP) could be an alternative to artemether-lumefantrine (AL), the efficacy and the tolerability of the two products for the treatment of uncomplicated falciparum malaria in sub-Saharan Africa have been compared.</p> <p>Methods</p> <p>A multicentric open randomized controlled clinical trial of three-day treatment of DP against AL for the treatment of two parallel groups of patients aged two years and above and suffering from uncomplicated falciparum malaria was carried out in Cameroon, Côte d'Ivoire and Senegal. Within each group, patients were randomly assigned supervised treatment. DP was given once a day for three days and AL twice a day for three days. Follow-up visits were performed on day 1 to 4 and on day 7, 14, 21, 28 to evaluate clinical and parasitological results. The primary endpoint was the recovery rate by day 28.</p> <p>Results</p> <p>Of 384 patients enrolled, 197 were assigned DP and 187 AL. The recovery rates adjusted by genotyping, 99.5% in the DP group and 98.9% in the AL group, were not statistically different (p = 0.538). No Early Therapeutic Failure (ETF) was observed. At day 28, two patients in the DP group and five in AL group had recurrent parasitaemia with <it>Plasmodium falciparum</it>. In the DP group, after PCR genotyping, one of the two recurrences was classified as a new infection and the other as recrudescence. In AL group, two recurrences were classified after correction by PCR as recrudescence. All cases of recrudescence were classified as Late Parasitological Failure (LPF). In each group, a rapid recovery from fever and parasitaemia was noticed. More than 90% of patients did no longer present fever or parasitaemia 48 hours after treatment. Both drugs were well tolerated. Indeed, no serious adverse events were reported during the follow-up period. Most of the adverse events which developed were moderate and did not result in the treatment being stopped in either treatment group.</p> <p>Conclusions</p> <p>Dihydroartemisinin-piperaquine was as effective and well-tolerated as artemether-lumefantrine in the treatment of uncomplicated falciparum malaria. In addition, dihydroartemisinin-piperaquine, a single daily dose, could be an advantage over artemether-lumefantrine in Africa because of better treatment observance.</p
Management and Outcome of Cardiac and Endovascular Cystic Echinococcosis
Cardiac and vascular involvement are infrequent in classical cystic echinococcosis (CE), but when they occur they tend to present earlier and are associated with complications that may be life threatening. Cardiovascular CE usually requires complex surgery, so in low-income countries the outcome is frequently fatal. This case series describes the characteristics of cardiovascular CE in patients diagnosed and treated at a Tropical Medicine & Clinical Parasitology Center in Spain. A retrospective case series of 11 patients with cardiac and/or endovascular CE, followed-up over a period of 15 years (1995–2009) is reported. The main clinical manifestations included thoracic pain or dyspnea, although 2 patients were asymptomatic. The clinical picture and complications vary according to cyst location. Isolated cardiac CE may be cured after surgery, while endovascular extracardiac involvement is associated with severe chronic complications. CE should be included in the differential diagnosis of cardiovascular disease in patients from endemic areas. CE is a neglected disease and further studies are necessary in order to make more definite management recommendations for this rare and severe form of the disease. The authors propose a general approach based on cyst location: exclusively cardiac, endovascular or both
Multiplicity and Diversity of Plasmodium vivax Infections in a Highly Endemic Region in Papua New Guinea
Plasmodium vivax is highly endemic in the lowlands of Papua New Guinea and accounts for a large proportion of the malaria cases in children less than 5 years of age. We collected 2117 blood samples at 2-monthly intervals from a cohort of 268 children aged 1 to 4.5 years and estimated the diversity and multiplicity of P. vivax infection. All P. vivax clones were genotyped using the merozoite surface protein 1 F3 fragment (msp1F3) and the microsatellite MS16 as molecular markers. High diversity was observed with msp1F3 (HE = 88.1%) and MS16 (HE = 97.8%). Of the 1162 P. vivax positive samples, 74% harbored multi-clone infections with a mean multiplicity of 2.7 (IQR = 1–3). The multiplicity of P. vivax infection increased slightly with age (P = 0.02), with the strongest increase in very young children. Intensified efforts to control malaria can benefit from knowledge of the diversity and MOI both for assessing the endemic situation and monitoring the effects of interventions
- …