33 research outputs found

    Mid-infrared resonant ablation for selective patterning of thin organic films

    Get PDF
    The fast growing market of organic electronics, including organic photovoltaics (OPV), stimulates the development of versatile technologies for structuring thin-film materials. Ultraviolet lasers have proven their full potential for patterning single organic layers, but in a multilayer organic device the obtained layer selectivity is limited as all organic layers show high UV absorption. In this paper, we introduce mid-infrared (IR) resonant ablation as an alternative approach, in which a short pulse mid-infrared laser can be wavelength tuned to one of the molecular vibrational transitions of the organic material to be ablated. As a result, the technique is selective in respect of processing a diversity of organics, which usually have different infrared absorption bands. Mid-IR resonant ablation is demonstrated for a variety of organic thin films, employing both nanosecond (15 ns) and picosecond (250 ps) laser pulses tunable between 3 and 4 microns. The nanosecond experimental set-up is based on a commercial laser at 1064 nm pumping a singly resonant Optical Parametric Oscillator (OPO) built around a Periodically-Poled Lithium Niobate (PPLN) crystal with several Quasi-Phase Matching (QPM) periods, delivering more than 0.3 W of mid-IR power, corresponding to 15 mu J pulses. The picosecond laser set-up is based on Optical Parametric Amplification (OPA) in a similar crystal, allowing for a comparison between both pulse length regimes. The wavelength of the mid-infrared laser can be tuned to one of the molecular vibrational transitions of the organic material to be ablated. For that reason, the IR absorption spectra of the organic materials used in a typical OPV device were characterized in the wavelength region that can be reached by the laser setups. Focus was on OPV substrate materials, transparent conductive materials, hole transport materials, and absorber materials. The process has been successfully demonstrated for selective thin film patterning, and the influence of the various laser parameters is discussed

    Triphenylamine/Tetracyanobutadiene-Based π-Conjugated Push–Pull Molecules End-Capped with Arene Platforms:Synthesis, Photophysics, and Photovoltaic Response

    Get PDF
    π-Conjugated push–pull molecules based on triphenylamine and 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) have been functionalized with different terminal arene units. In solution, these highly TCBD-twisted systems showed a strong internal charge transfer band in the visible spectrum and no detectable photoluminescence (PL). Photophysical and theoretical investigations revealed very short singlet excited state deactivation time of ≈10 ps resulting from significant conformational changes of the TCBD-arene moiety upon photoexcitation, opening a pathway for non-radiative decay. The PL was recovered in vacuum-processed films or when the molecules were dispersed in a PMMA matrix leading to a significant increase of the excited state deactivation time. As shown by cyclic voltammetry, these molecules can act as electron donors compared to C 60. Hence, vacuum-processed planar heterojunction organic solar cells were fabricated leading to a maximum power conversion efficiency of ca. 1.9 % which decreases with the increase of the arene size

    The interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons

    Full text link
    We have studied the interaction of polyaromatic hydrocarbons (PAHs) with the basal plane of graphite using thermal desorption spectroscopy. Desorption kinetics of benzene, naphthalene, coronene and ovalene at sub-monolayer coverages yield activation energies of 0.50 eV, 0.85 eV, 1.40 eV and 2.1 eV, respectively. Benzene and naphthalene follow simple first order desorption kinetics while coronene and ovalene exhibit fractional order kinetics owing to the stability of 2-D adsorbate islands up to the desorption temperature. Pre-exponential frequency factors are found to be in the range 101410^{14}-1021s110^{21} s^{-1} as obtained from both Falconer--Madix (isothermal desorption) analysis and Antoine's fit to vapour pressure data. The resulting binding energy per carbon atom of the PAH is 52±52\pm5 meV and can be identified with the interlayer cohesive energy of graphite. The resulting cleavage energy of graphite is 61±561\pm5~meV/atom which is considerably larger than previously reported experimental values.Comment: 8 pages, 4 figures, 2 table

    Roadmap on Photovoltaic Absorber Materials for Sustainable Energy Conversion

    Full text link
    Photovoltaics (PVs) are a critical technology for curbing growing levels of anthropogenic greenhouse gas emissions, and meeting increases in future demand for low-carbon electricity. In order to fulfil ambitions for net-zero carbon dioxide equivalent (CO2eq) emissions worldwide, the global cumulative capacity of solar PVs must increase by an order of magnitude from 0.9 TWp in 2021 to 8.5 TWp by 2050 according to the International Renewable Energy Agency, which is considered to be a highly conservative estimate. In 2020, the Henry Royce Institute brought together the UK PV community to discuss the critical technological and infrastructure challenges that need to be overcome to address the vast challenges in accelerating PV deployment. Herein, we examine the key developments in the global community, especially the progress made in the field since this earlier roadmap, bringing together experts primarily from the UK across the breadth of the photovoltaics community. The focus is both on the challenges in improving the efficiency, stability and levelized cost of electricity of current technologies for utility-scale PVs, as well as the fundamental questions in novel technologies that can have a significant impact on emerging markets, such as indoor PVs, space PVs, and agrivoltaics. We discuss challenges in advanced metrology and computational tools, as well as the growing synergies between PVs and solar fuels, and offer a perspective on the environmental sustainability of the PV industry. Through this roadmap, we emphasize promising pathways forward in both the short- and long-term, and for communities working on technologies across a range of maturity levels to learn from each other.Comment: 160 pages, 21 figure

    Raster-Tunnel-Mikroskopie und -Spektroskopie an organischen Adsorbatsystemen

    No full text
    Die vorliegende Arbeit beschreibt die experimentelle Untersuchung molekularer organischer Adsorbate mit Hilfe der Raster-Tunnel-Mikroskopie und -Spektroskopie im Ultrahochvakuum (UHV). Als Modellsubstanzen dienen Coronen, verschiedene Phthalo-cyanin-farbstoffe sowie je ein nematischer und ein discotischer Flüssigkristall. Mono- und Submonolagen dieser Substanzen werden hinsichtlich ihrer Adsorbatstruktur auf kristallographisch definierten Festkörper-oberflächen untersucht. Die dabei gewonnenen STM-Bilder zeigen die molekular und submolekular aufgelöste Struktur der Adsorbate. Die Untersuchung von Submonolagen zweier Metall-Phthalocyanine bei tiefen Temperaturen zeigt eine Bildung molekularer Ketten. Zur Ermittlung der elektronischen Eigenschaften der Moleküle werden molekulare Mono- und Submonolagen mit Hilfe der Raster-Tunnel-Spektroskopie (STS) bei Raumtemperatur und bei tiefen Temperaturen untersucht. Einige der Substanzen ermöglichen die Messung sehr stabiler lokaler Tunnelstromkennlinien. Die Ergebnisse der STS-Experimente an Coronen werden mit Resultaten von ab-initio-Rechnungen der Molekül-orbitalstruktur verglichen.The work describes experimental investigations of molecular organic adsorbates in ultra high vacuum (UHV) by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Coronene, several phthalocyanine dyes, and both a nematic and a discotic liquid crystal are chosen as model substances. Mono- and submonolayers of these substances adsorbed onto crystallographically well-defined surfaces are observed by STM with regard to their adsorbate structure. The STM images reveal the molecular and intramolecular structure of the adsorbates. Submonolayers of two metal phthalocyanines, observed at low temperatures, reveal the formation of molecular chains. With special regard to the electronic properties, such ultra thin films are investigated by scanning tunneling spectroscopy (STS), both at room temperature and at helium-cooled low temperatures. Some of the substances allow the collection of very stable local STS curves. The STS data coincide very well with the results of ab-initio calculations of their molecular orbital structure

    Raster-Tunnel-Mikroskopie und -Spektroskopie an organischen Adsorbatsystemen

    No full text
    Die vorliegende Arbeit beschreibt die experimentelle Untersuchung molekularer organischer Adsorbate mit Hilfe der Raster-Tunnel-Mikroskopie und -Spektroskopie im Ultrahochvakuum (UHV). Als Modellsubstanzen dienen Coronen, verschiedene Phthalo-cyanin-farbstoffe sowie je ein nematischer und ein discotischer Flüssigkristall. Mono- und Submonolagen dieser Substanzen werden hinsichtlich ihrer Adsorbatstruktur auf kristallographisch definierten Festkörper-oberflächen untersucht. Die dabei gewonnenen STM-Bilder zeigen die molekular und submolekular aufgelöste Struktur der Adsorbate. Die Untersuchung von Submonolagen zweier Metall-Phthalocyanine bei tiefen Temperaturen zeigt eine Bildung molekularer Ketten. Zur Ermittlung der elektronischen Eigenschaften der Moleküle werden molekulare Mono- und Submonolagen mit Hilfe der Raster-Tunnel-Spektroskopie (STS) bei Raumtemperatur und bei tiefen Temperaturen untersucht. Einige der Substanzen ermöglichen die Messung sehr stabiler lokaler Tunnelstromkennlinien. Die Ergebnisse der STS-Experimente an Coronen werden mit Resultaten von ab-initio-Rechnungen der Molekül-orbitalstruktur verglichen.The work describes experimental investigations of molecular organic adsorbates in ultra high vacuum (UHV) by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Coronene, several phthalocyanine dyes, and both a nematic and a discotic liquid crystal are chosen as model substances. Mono- and submonolayers of these substances adsorbed onto crystallographically well-defined surfaces are observed by STM with regard to their adsorbate structure. The STM images reveal the molecular and intramolecular structure of the adsorbates. Submonolayers of two metal phthalocyanines, observed at low temperatures, reveal the formation of molecular chains. With special regard to the electronic properties, such ultra thin films are investigated by scanning tunneling spectroscopy (STS), both at room temperature and at helium-cooled low temperatures. Some of the substances allow the collection of very stable local STS curves. The STS data coincide very well with the results of ab-initio calculations of their molecular orbital structure
    corecore