38 research outputs found
The effect of omega-3 fatty acids on central nervous system remyelination in fat-1 mice
Background There is a large body of experimental evidence suggesting that
omega-3 (n-3) polyunsaturated fatty acids (PUFAs) are capable of modulating
immune function. Some studies have shown that these PUFAs might have a
beneficial effect in patients suffering form multiple sclerosis (MS), a
chronic inflammatory demyelinating disease of the central nervous system
(CNS). This could be due to increased n-3 PUFA-derived anti-inflammatory lipid
mediators. In the present study we tested the effect of an endogenously
increased n-3 PUFA status on cuprizone-induced CNS demyelination and
remyelination in fat-1 mice versus their wild-type (wt) littermates. Fat-1
mice express an n-3 desaturase, which allows them to convert n-6 PUFAs into
n-3 PUFAs. Results CNS lipid profiles in fat-1 mice showed a significant
increase of eicosapentaenoic acid (EPA) levels but similar docosahexaenoic
acid levels compared to wt littermates. This was also reflected in
significantly higher levels of monohydroxy EPA metabolites such as
18-hydroxyeicosapentaenoic acid (18-HEPE) in fat-1 brain tissue. Feeding fat-1
mice and wt littermates 0.2% cuprizone for 5 weeks caused a similar degree of
CNS demyelination in both groups; remyelination was increased in the fat-1
group after a recovery period of 2 weeks. However, at p = 0.07 this difference
missed statistical significance. Conclusions These results indicate that n-3
PUFAs might have a role in promotion of remyelination after toxic injury to
CNS oligodendrocytes. This might occur either via modulation of the immune
system or via a direct effect on oligodendrocytes or neurons through EPA-
derived lipid metabolites such as 18-HEPE
Bioactive oxylipins in type 2 diabetes mellitus patients with and without hypertriglyceridemia
Objective: Dyslipidemia, in particular elevated triglycerides (TGs) contribute to increased cardiovascular risk in type 2 diabetes mellitus (T2DM). In this pilot study we aimed to assess how increased TGs affect hepatic fat as well as polyunsaturated fatty acid (PUFA) metabolism and oxylipin formation in T2DM patients.
Methods: 40 patients with T2DM were characterized analyzing routine lipid blood parameters, as well as medical history and clinical characteristics. Patients were divided into a hypertriglyceridemia (HTG) group (TG ≥ 1.7mmol/l) and a normal TG group with TGs within the reference range (TG < 1.7mmol/l). Profiles of PUFAs and their oxylipins in plasma were measured by gas chromatography and liquid chromatography/tandem mass spectrometry. Transient elastography (TE) was used to assess hepatic fat content measured as controlled attenuation parameter (CAP) (in dB/m) and the degree of liver fibrosis measured as stiffness (in kPa).
Results: Mean value of hepatic fat content measured as CAP as well as body mass index (BMI) were significantly higher in patients with high TGs as compared to those with normal TGs, and correlation analysis showed higher concentrations of TGs with increasing CAP and BMI scores in patients with T2DM. There were profound differences in plasma oxylipin levels between these two groups. Cytochrome P450 (CYP) and lipoxygenase (LOX) metabolites were generally more abundant in the HTG group, especially those derived from arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), γ-linolenic acid (γ-LA), and α-linolenic acid (α-LA), and a strong correlation between TG levels and plasma metabolites from different pathways was observed.
Conclusions: In adult patients with T2DM, elevated TGs were associated with increased liver fat and BMI. Furthermore, these patients also had significantly higher plasma levels of CYP- and LOX- oxylipins, which could be a novel indicator of increased inflammatory pathway activity, as well as a novel target to dampen this activity
Acetylsalicylic Acid Reduces the Severity of Dextran Sodium Sulfate-Induced Colitis and Increases the Formation of Anti-Inflammatory Lipid Mediators
The role of non-steroidal anti-inflammatory drugs in inflammatory bowel disease is controversial, as they have been implicated in disease aggravation. Different from other cyclooxygenase inhibitors, acetylsalicylic acid (ASA) enhances the formation of anti-inflammatory and proresolution lipoxins derived from arachidonic acid as well as resolvins from omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). In this study, we examined the effect of ASA on murine dextran sodium sulfate colitis. A mouse magnetic resonance imaging (MRI) protocol and post mortem assessment were used to assess disease severity, and lipid metabolites were measured using liquid chromatography-coupled tandem mass spectrometry. Decreased colitis activity was demonstrated by phenotype and MRI assessment in mice treated with ASA, and confirmed in postmortem analysis. Analysis of lipid mediators showed sustained formation of lipoxin A4 and an increase of DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA) after treatment with ASA. Furthermore, in vitro experiments in RAW264.7 murine macrophages demonstrated significantly increased phagocytosis activity after incubation with 17-HDHA, supporting its proresolution effect. These results show a protective effect of ASA in a murine colitis model and could give a rationale for a careful reassessment of ASA therapy in patients with inflammatory bowel disease and particularly ulcerative colitis, possibly combined with DHA supplementation
Bioactive oxylipins in type 2 diabetes mellitus patients with and without hypertriglyceridemia
ObjectiveDyslipidemia, in particular elevated triglycerides (TGs) contribute to increased cardiovascular risk in type 2 diabetes mellitus (T2DM). In this pilot study we aimed to assess how increased TGs affect hepatic fat as well as polyunsaturated fatty acid (PUFA) metabolism and oxylipin formation in T2DM patients.Methods40 patients with T2DM were characterized analyzing routine lipid blood parameters, as well as medical history and clinical characteristics. Patients were divided into a hypertriglyceridemia (HTG) group (TG ≥ 1.7mmol/l) and a normal TG group with TGs within the reference range (TG < 1.7mmol/l). Profiles of PUFAs and their oxylipins in plasma were measured by gas chromatography and liquid chromatography/tandem mass spectrometry. Transient elastography (TE) was used to assess hepatic fat content measured as controlled attenuation parameter (CAP) (in dB/m) and the degree of liver fibrosis measured as stiffness (in kPa).ResultsMean value of hepatic fat content measured as CAP as well as body mass index (BMI) were significantly higher in patients with high TGs as compared to those with normal TGs, and correlation analysis showed higher concentrations of TGs with increasing CAP and BMI scores in patients with T2DM. There were profound differences in plasma oxylipin levels between these two groups. Cytochrome P450 (CYP) and lipoxygenase (LOX) metabolites were generally more abundant in the HTG group, especially those derived from arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), γ-linolenic acid (γ-LA), and α-linolenic acid (α-LA), and a strong correlation between TG levels and plasma metabolites from different pathways was observed.ConclusionsIn adult patients with T2DM, elevated TGs were associated with increased liver fat and BMI. Furthermore, these patients also had significantly higher plasma levels of CYP- and LOX- oxylipins, which could be a novel indicator of increased inflammatory pathway activity, as well as a novel target to dampen this activity
Knock-In Mice Expressing a 15-Lipoxygenating Alox5 Mutant Respond Differently to Experimental Inflammation Than Reported Alox5−/− Mice
Arachidonic acid 5-lipoxygenase (ALOX5) is the key enzyme in the biosynthesis of pro-inflammatory leukotrienes. We recently created knock-in mice (Alox5-KI) which express an arachidonic acid 15-lipoxygenating Alox5 mutant instead of the 5-lipoxygenating wildtype enzyme. These mice were leukotriene deficient but exhibited an elevated linoleic acid oxygenase activity. Here we characterized the polyenoic fatty acid metabolism of these mice in more detail and tested the animals in three different experimental inflammation models. In experimental autoimmune encephalomyelitis (EAE), Alox5-KI mice displayed an earlier disease onset and a significantly higher cumulative incidence rate than wildtype controls but the clinical score kinetics were not significantly different. In dextran sodium sulfate-induced colitis (DSS) and in the chronic constriction nerve injury model (CCI), Alox5-KI mice performed like wildtype controls with similar genetic background. These results were somewhat surprising since in previous loss-of-function studies targeting leukotriene biosynthesis (Alox5(-/-) mice, inhibitor studies), more severe inflammatory symptoms were observed in the EAE model but the degree of inflammation in DSS colitis was attenuated. Taken together, our data indicate that these mutant Alox5-KI mice respond differently in two models of experimental inflammation than Alox5(-/-) animals tested previously in similar experimental setups
A Role for Lipid Mediators in Acute Myeloid Leukemia
In spite of therapeutic improvements in the treatment of different hematologic malignancies, the prognosis of acute myeloid leukemia (AML) treated solely with conventional induction and consolidation chemotherapy remains poor, especially in association with high risk chromosomal or molecular aberrations. Recent discoveries describe the complex interaction of immune effector cells, as well as the role of the bone marrow microenvironment in the development, maintenance and progression of AML. Lipids, and in particular omega-3 as well as omega-6 polyunsaturated fatty acids (PUFAs) have been shown to play a vital role as signaling molecules of immune processes in numerous benign and malignant conditions. While the majority of research in cancer has been focused on the role of lipid mediators in solid tumors, some data are showing their involvement also in hematologic malignancies. There is a considerable amount of evidence that AML cells are targetable by innate and adaptive immune mechanisms, paving the way for immune therapy approaches in AML. In this article we review the current data showing the lipid mediator and lipidome patterns in AML and their potential links to immune mechanisms
Quantitative Profiling of Hydroxy Lipid Metabolites in Mouse Organs Reveals Distinct Lipidomic Profiles and Modifications Due to Elevated n-3 Fatty Acid Levels
Polyunsaturated fatty acids (PUFA) are precursors of bioactive metabolites and mediators. In this study, the profile of hydroxyeicosatetraenoic (HETE), hydroxyeicosapentaenoic (HEPE) and hydroxydocosahexaenoic (HDHA) acids derived from arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in colon, liver, lung, spleen, muscle, heart and kidney tissue of healthy wildtype mice were characterized, and compared to profiles in organs from transgenic fat-1 mice engineered to express the Caenorhabditis elegans fat-1 gene encoding an n-3 desaturase and thereby with endogenously elevated n-3 PUFA levels. PUFAs were measured using gas chromatography. The lipid metabolites were assayed using LC-MS/MS. AA and DHA were the prominent PUFAs in wildtype and fat-1 mice. EPA levels were low in both groups even though there was a significant increase in fat-1 organs with an up to 12-fold increase in fat-1 spleen and kidney. DHA levels increased by approximately 1.5-fold in fat-1 as compared to wildtype mice. While HETEs remained the same or decreased moderately and HDHAs increased 1- to 3-fold, HEPE formation in fat-1 tissues increased from 8- (muscle) to 44-fold (spleen). These findings indicate distinct profiles of monohydroxy lipid metabolites in different organs and strong utilization of EPA for HEPE formation, by which moderate EPA supplementation might trigger formation of biologically active EPA-derived resolvins
Circulating Omega-3 Polyunsaturated Fatty Acids Levels in Coronary Heart Disease: Pooled Analysis of 36 Observational Studies
Long-chain n-3 polyunsaturated fatty acid (PUFA) supplementation has shown potential benefits in the prevention of coronary heart disease (CHD); however, the impact of omega-3 fatty acid levels on CHD risk remains a subject of debate. Here, we aimed to investigate the association between n-3 PUFA levels and the risk of CHD, with particular reference to the subtypes of n-3 PUFA. Methods: Prospective studies and retrospective case-control studies analyzing n-3 PUFA levels in CHD, published up to 30 July 2022, were selected. A random effects meta-analysis was used for pooled assessment, with relative risks (RRs) expressed as 95% confidence intervals (CIs) and standardized mean differences expressed as weight mean differences (WMDs). Subgroup and meta-regression analyses were conducted to assess the impact of n-3 PUFA exposure interval on the CHD subtype variables of the study. Results: We included 20 prospective studies (cohort and nested case-control) and 16 retrospective case-control studies, in which n-3 PUFAs were measured. Higher levels of n-3 PUFAs (ALA, EPA, DPA, DHA, EPA + DHA, total n-3 PUFAs) were associated with a reduced risk of CHD, with RRs (95% CI) of 0.89 (0.81, 0.98), 0.83 (0.72, 0.96); 0.80 (0.67,0.95), 0.75 (0.64, 0.87), 0.83 (0.73, 0.95), and 0.80 (0.70, 0.93), respectively, p n-3 PUFA levels compared to healthy controls (p n-3 PUFA (EPA + DHA) levels. Also, the link between n-3 PUFA levels in erythrocytes with total CHD was generally stronger than other lipid pools. Conclusions: n-3 PUFAs are significantly related to CHD risk, and these findings support the beneficial effects of n-3 PUFAs on CHD
ω-3 PUFAs in the Prevention and Cure of Inflammatory, Degenerative, and Neoplastic Diseases 2014
While still a controversial topic, the omega-3 fatty acids as subject of research have come of age, particularly in recent years. They have made their way from being simple nutrition components, through possibly some exaggerations nominating them as universal tool to improve human health, to being the object of research in a wide variety of preclinical basic-research contexts as well as in smaller and larger clinical studies with mixed results regarding their potential health effects
n-3 PUFAs in the Prevention and Cure of Inflammatory, Degenerative, and Neoplastic Diseases
The possibility of health benefits associated with dietary omega-3 polyunsaturated fatty acids (\u3c9-3 PUFAs) has been described for several chronic conditions, including cardiovascular, neurodegenerative, and neoplastic diseases. A large body of evidence has emerged over the past years to show the critical role played by inflammation in the pathogenesis of these diseases, previously not considered inflammation related. Therefore, it has been recently hypothesized that \u3c9-3 PUFAs\u2019 effects may be related, at least in part, to their direct anti-inflammatory activity as well as to that of their oxygenated metabolites (17-HDHA, 18-HEPE, resolvins, and protectins). In this special issue G. Calviello and collaborators summarize and comprehensively discuss the current knowledge regarding the modulating effects of \u3c9-3 PUFAs on the production of inflammatory cytokines and proresolving or protective lipid mediators in the context of inflammatory, metabolic, neurodegenerative, and neoplastic diseases