523 research outputs found

    Probing electron-electron interaction in quantum Hall systems with scanning tunneling spectroscopy

    Full text link
    Using low-temperature scanning tunneling spectroscopy applied to the Cs-induced two-dimensional electron system (2DES) on p-type InSb(110), we probe electron-electron interaction effects in the quantum Hall regime. The 2DES is decoupled from p-doped bulk states and exhibits spreading resistance within the insulating quantum Hall phases. In quantitative agreement with calculations we find an exchange enhancement of the spin splitting. Moreover, we observe that both the spatially averaged as well as the local density of states feature a characteristic Coulomb gap at the Fermi level. These results show that electron-electron interaction effects can be probed down to a resolution below all relevant length scales.Comment: supplementary movie in ancillary file

    Density matrix renormalization group study of the interacting Kitaev chain with quasi-periodic disorder

    Full text link
    We document the ground state phase diagram of the one-dimensional Kitaev chain with quasi-periodic disorder in the presence of two-body interactions. Our data was obtained for systems of L=1000L=1000 sites using large-scale density matrix renormalization group numerics and is benchmarked against known results for the clean system. We demonstrate that moderate quasi-periodic disorder stabilizes the topological phase both for repulsive and attractive interactions. For larger disorder strengths, the system features re-entrance behavior and multiple phase transitions

    Time-evolving a matrix product state with long-ranged interactions

    Get PDF
    We introduce a numerical algorithm to simulate the time evolution of a matrix product state under a long-ranged Hamiltonian. In the effectively one-dimensional representation of a system by matrix product states, long-ranged interactions are necessary to simulate not just many physical interactions but also higher-dimensional problems with short-ranged interactions. Since our method overcomes the restriction to short-ranged Hamiltonians of most existing methods, it proves particularly useful for studying the dynamics of both power-law interacting one-dimensional systems, such as Coulombic and dipolar systems, and quasi two-dimensional systems, such as strips or cylinders. First, we benchmark the method by verifying a long-standing theoretical prediction for the dynamical correlation functions of the Haldane-Shastry model. Second, we simulate the time evolution of an expanding cloud of particles in the two-dimensional Bose-Hubbard model, a subject of several recent experiments.Comment: 5 pages + 3 pages appendices, 4 figure

    Investigation of the coupling asymmetries at double-slit interference experiments

    Full text link
    Double-slit experiments inferring the phase and the amplitude of the transmission coefficient performed at quantum dots (QD), in the Coulomb blockade regime, present anomalies at the phase changes depending on the number of electrons confined. This phase change cannot be explained if one neglects the electron-electron interactions. Here, we present our numerical results, which simulate the real sample geometry by solving the Poisson equation in 3D. The screened potential profile is used to obtain energy eigenstates and eigenvalues of the QD. We find that, certain energy levels are coupled to the leads stronger compared to others. Our results give strong support to the phenomenological models in the literature describing the charging of a QD and the abrupt phase changes.Comment: conference paper, 50th anniversary of Aharonov-Bohm effec

    The role of mesoscale hydrography on microbial dynamics in the northeast Atlantic: Results of a spring bloom experiment

    Get PDF
    During RV Meteor cruise No. 10 from May to June 1989 (JGOFS pilot study) bacterial and picocyanobacterial abundance, biomass, and bacterial production were estimated at two drift stations close to 47N, 20W and 58N, 20W in the northeast Atlantic. At 47N two different mesoscale hydrographic structures were sampled which divided the drift experiment into a cyclonic and an anticyclonic circulation phase. Transition from one phase to the next was clearly reflected by changes of the biological structure in the upper water column. Phytoplankton stocks maintained during the cyclonic phase were about 1.8 times higher than those of the anticyclonic phase (1552 mg C m−2 and 880 mg C m−2, resp., integrated over the mixed layer, Deckers, 1991). Integrated stocks of bacteria showed an opposite pattern of distribution. Picocyanobacterial biomass (PCB) was 3.4 times higher during the anticyclonic phase than during the cyclonic phase (96 mg C m−2 and 28 mg C m−2, resp.), and the respective factor for total bacterial biomass (TBB) was 3.7 (830 mg C m−2 and 225 mg C m−2, resp.). Our analysis indicates that the combined bacterial biomass dominated within the mixed layer during the anticyclonic phase, while the cyclonic phase was clearly dominated by eucaryotic phytoplankton. Additional evidence for a shift of biology toward the microbial food web was indicated by a strong increase of bacteria during the anticyclonic phase. Thus, simultaneously and side by side, an autotrophic and a heterotrophic system were supported by the prevailing hydrographic conditions. At 58N within an anticyclonic mesoscale hydrographic structure the phytoplankton bloom was at a developing stage, characterized by low biomass (730 mg C m−2 in the mixed layer, Deckers, 1991) but relatively high primary production. In contrast, bacterial stocks were quite high, but bacterial production was low in comparison to the anticyclonic phase at 47N (90 mg C m−2 d−1 and 153 mg C m−2 d−1, resp., integrated from 0–300 m). It was calculated that bacterial gross production averaged 42% (47N, anticyclonic phase) and 25% (58N) of primary production. These results suggest that within a specific type of hydrographic structure either a heterotrophic or an autotrophic system can be established, depending on the stage of bloom development. In conclusion: Depending on their origin and age, mesoscale hydrographic structures can be correlated with different stages of biological development. This leads to the mesoscale patchiness of biological measurements, which is a characteristic feature of the northeast Atlantic

    Many-body localization and the area law in two dimensions

    Get PDF
    We study the high-energy phase diagram of a two-dimensional spin-12\frac{1}{2} Heisenberg model on a square lattice in the presence of disorder. The use of large-scale tensor network numerics allows us to compute the bi-partite entanglement entropy for systems of up to 30×730\times7 lattice sites. We demonstrate the existence of a finite many-body localized phase for large disorder strength WW for which the eigenstate thermalization hypothesis is violated. Moreover, we show explicitly that the area law holds for excited states in this phase and determine an estimate for the critical WcW_{\rm{c}} where the transition to the ergodic phase occurs.Comment: 5 pages, 5 figure

    A renormalization group approach to time dependent transport through correlated quantum dots

    Full text link
    We introduce a real time version of the functional renormalization group which allows to study correlation effects on nonequilibrium transport through quantum dots. Our method is equally capable to address (i) the relaxation out of a nonequilibrium initial state into a (potentially) steady state driven by a bias voltage and (ii) the dynamics governed by an explicitly time-dependent Hamiltonian. All time regimes from transient to asymptotic can be tackled; the only approximation is the consistent truncation of the flow equations at a given order. As an application we investigate the relaxation dynamics of the interacting resonant level model which describes a fermionic quantum dot dominated by charge fluctuations. Moreover, we study decoherence and relaxation phenomena within the ohmic spin-boson model by mapping the latter to the interacting resonant level model

    Transmission phase lapses in quantum dots: the role of dot-lead coupling asymmetry

    Full text link
    Lapses of transmission phase in transport through quantum dots are ubiquitous already in the absence of interaction, in which case their precise location is determined by the signs and magnitudes of the tunnelling matrix elements. However, actual measurements for a quantum dot embedded in an Aharonov-Bohm interferometer show systematic sequences of phase lapses separated by Coulomb peaks -- an issue that attracted much attention and generated controversy. Using a two-level quantum dot as an example we show that this phenomenon can be accounted for by the combined effect of asymmetric dot-lead couplings (left lead/right lead asymmetry as well as different level broadening for different levels) and interaction-induced "population switching" of the levels, rendering this behaviour generic. We construct and analyse a mean field scheme for an interacting quantum dot, and investigate the properties of the mean field solution, paying special attention to the character of its dependence (continuous vs. discontinuous) on the chemical potential or gate voltage.Comment: 34 LaTeX pages in IOP format, 9 figures; misprints correcte
    • …
    corecore