128 research outputs found

    Increasing Sensor Efficiency for Small Satellite Maritime Domain Awareness

    Get PDF
    NPS NRP Project PosterIncreasing Sensor Efficiency for Small Satellite Maritime Domain AwarenessN2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval OperationsĀ (CNO)Approved for public release. Distribution is unlimited.

    Increasing Sensor Efficiency for Small Satellite Maritime Domain Awareness

    Get PDF
    NPS NRP Executive SummaryIncreasing Sensor Efficiency for Small Satellite Maritime Domain AwarenessN2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval OperationsĀ (CNO)Approved for public release. Distribution is unlimited.

    A Pseudospectral Approach to High Index DAE Optimal Control Problems

    Get PDF
    Historically, solving optimal control problems with high index differential algebraic equations (DAEs) has been considered extremely hard. Computational experience with Runge-Kutta (RK) methods confirms the difficulties. High index DAE problems occur quite naturally in many practical engineering applications. Over the last two decades, a vast number of real-world problems have been solved routinely using pseudospectral (PS) optimal control techniques. In view of this, we solve a "provably hard," index-three problem using the PS method implemented in DIDO, a state-of-the-art MATLAB optimal control toolbox. In contrast to RK-type solution techniques, no laborious index-reduction process was used to generate the PS solution. The PS solution is independently verified and validated using standard industry practices. It turns out that proper PS methods can indeed be used to "directly" solve high index DAE optimal control problems. In view of this, it is proposed that a new theory of difficulty for DAEs be put forth.Comment: 14 pages, 9 figure

    Experimental Implementation of Riemann--Stieltjes Optimal Control for Agile Imaging Satellites

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.2514/1.G00132

    Waypoint Following Dynamics of a Quaternion Error Feedback Attitude Control System

    Get PDF
    Closed-loop attitude steering can be used to implement a non-standard attitude maneuver by using a conventional attitude control system to track a non-standard attitude profile. The idea has been employed to perform zero-propellant maneuvers on the International Space Station and minimum time maneuvers on NASA's TRACE space telescope. A challenge for operational implementation of the idea is the finite capacity of a space vehicle's command storage buffer. One approach to mitigate the problem is to downsample-and-hold the attitude commands as a set of waypoints for the attitude control system to follow. In this paper, we explore the waypoint following dynamics of a quaternion error feedback control law for downsample-and-hold. It is shown that downsample-and-hold induces a ripple between downsamples that causes the satellite angular rate to significantly overshoot the desired limit. Analysis in the zz-domain is carried out in order to understand the phenomenon. An interpolating Chebyshev-type filter is proposed that allows attitude commands to be encoded in terms of a set of filter coefficients. Using the interpolating filter, commands can be issued at the ACS rate but with significantly reduced memory requirements. The attitude control system of NASA's Lunar Reconnaissance Orbiter is used as an example to illustrate the behavior of a practical attitude control system.Comment: 24 pages; 11 figure

    A Pseudospectral Optimal Motion Planner for Autonomous Unmanned Vehicles

    Get PDF
    2010 American Control Conference, Marriott Waterfront, Baltimore, MD, USA, June 30-July 02, 2010This paper presents a pseudospectral (PS) optimal control algorithm for the autonomous motion planning of a fleet of unmanned ground vehicles (UGVs). The UGVs must traverse an obstacle-cluttered environment while maintaining robustness against possible collisions. The generality of the algorithm comes from a binary logic that modifies the cost function for various motion planning modes. Typical scenarios including path following and multi-vehicle pursuit are demonstrated. The proposed framework enables the availability of real-time information to be exploited by real-time reformulation of the optimal control problem combined with real-time computation. This allows the each vehicle to accommodate potential changes in the mission/environment and uncertain conditions. Experimental results are presented to substantiate the utility of the approach on a typical planning scenario

    Bipartite Graph Learning for Autonomous Task-to-Sensor Optimization

    Get PDF
    NPS NRP Technical ReportThis study addresses the question of how machine learning/artificial intelligence can be applied to identify the most appropriate 'sensor' for a task, to prioritize tasks, and to identify gaps/unmet requirements. The concept of a bipartite graph provides a mathematical framework for task-to-sensor mapping by establishing connectivity between various high-level tasks and the specific sensors and processes that must be invoked to fulfil those tasks and other mission requirements. The connectivity map embedded in the bipartite graph can change depending on the availability/unavailability of resources, the presence of constraints (physics, operational, sequencing), and the satisfaction of individual tasks. Changes can also occur according to the valuation, re-assignment and re-valuation of the perceived task benefit and how the completion of a specific task (or group of tasks) can contribute to the state of knowledge. We plan to study how machine learning can be used to perform bipartite learning for task-to-sensor planning.Naval Special Warfare Command (NAVSPECWARCOM)N9 - Warfare SystemsThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval OperationsĀ (CNO)Approved for public release. Distribution is unlimited.

    Bipartite Graph Learning for Autonomous Task-to-Sensor Optimization

    Get PDF
    NPS NRP Project PosterThis study addresses the question of how machine learning/artificial intelligence can be applied to identify the most appropriate 'sensor' for a task, to prioritize tasks, and to identify gaps/unmet requirements. The concept of a bipartite graph provides a mathematical framework for task-to-sensor mapping by establishing connectivity between various high-level tasks and the specific sensors and processes that must be invoked to fulfil those tasks and other mission requirements. The connectivity map embedded in the bipartite graph can change depending on the availability/unavailability of resources, the presence of constraints (physics, operational, sequencing), and the satisfaction of individual tasks. Changes can also occur according to the valuation, re-assignment and re-valuation of the perceived task benefit and how the completion of a specific task (or group of tasks) can contribute to the state of knowledge. We plan to study how machine learning can be used to perform bipartite learning for task-to-sensor planning.Naval Special Warfare Command (NAVSPECWARCOM)N9 - Warfare SystemsThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval OperationsĀ (CNO)Approved for public release. Distribution is unlimited.

    Bipartite Graph Learning for Autonomous Task-to-Sensor Optimization

    Get PDF
    NPS NRP Project PosterThis study addresses the question of how machine learning/artificial intelligence can be applied to identify the most appropriate 'sensor' for a task, to prioritize tasks, and to identify gaps/unmet requirements. The concept of a bipartite graph provides a mathematical framework for task-to-sensor mapping by establishing connectivity between various high-level tasks and the specific sensors and processes that must be invoked to fulfil those tasks and other mission requirements. The connectivity map embedded in the bipartite graph can change depending on the availability/unavailability of resources, the presence of constraints (physics, operational, sequencing), and the satisfaction of individual tasks. Changes can also occur according to the valuation, re-assignment and re-valuation of the perceived task benefit and how the completion of a specific task (or group of tasks) can contribute to the state of knowledge. We plan to study how machine learning can be used to perform bipartite learning for task-to-sensor planning.Naval Special Warfare Command (NAVSPECWARCOM)N9 - Warfare SystemsThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval OperationsĀ (CNO)Approved for public release. Distribution is unlimited.

    Bipartite Graph Learning for Autonomous Task-to-Sensor Optimization

    Get PDF
    NPS NRP Executive SummaryThis study addresses the question of how machine learning/artificial intelligence can be applied to identify the most appropriate 'sensor' for a task, to prioritize tasks, and to identify gaps/unmet requirements. The concept of a bipartite graph provides a mathematical framework for task-to-sensor mapping by establishing connectivity between various high-level tasks and the specific sensors and processes that must be invoked to fulfil those tasks and other mission requirements. The connectivity map embedded in the bipartite graph can change depending on the availability/unavailability of resources, the presence of constraints (physics, operational, sequencing), and the satisfaction of individual tasks. Changes can also occur according to the valuation, re-assignment and re-valuation of the perceived task benefit and how the completion of a specific task (or group of tasks) can contribute to the state of knowledge. We plan to study how machine learning can be used to perform bipartite learning for task-to-sensor planning.Naval Special Warfare Command (NAVSPECWARCOM)N9 - Warfare SystemsThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval OperationsĀ (CNO)Approved for public release. Distribution is unlimited.
    • ā€¦
    corecore