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I. Introduction

I NCREASING the agility of an imaging satellite allows the slew
time between images to be reduced and can significantly increase

the number of collections in a given accesswindow.One approach for
enhancing agility,without the need for hardware change, is to employ
optimal control theory to design shortest-time maneuvers that satisfy
all the relevant practical and operational constraints. Because stan-
dard optimal control solutions provide an open-loop control trajec-
tory based on a nominal model of the plant, open-loop implemen-
tation of the optimal control is not operationally feasible for imaging
systems. This is because tight tolerances on pointing accuracy are
required to perform the imaging task. Therefore, even if the dynamics
of the satellite are known with a good degree of accuracy, feedback is
still needed to ensure that requirements on pointing accuracy can
be met.
For a reaction wheel spacecraft, the feedback implementation of

the shortest-timemaneuvers can be accomplished relatively easily by
using the attitude control law to track the optimal attitude trajectories.
This approach has been successfully demonstrated in flight tests
onboard NASA’s Transition Region and Coronal Explorer [1]. A
significant challenge in migrating this implementation concept to
imaging systems that use control moment gyroscopes (CMGs) is the
fact that the feedback law for a CMG momentum control system
includes a steering algorithm that may become singular for certain
combinations of CMG gimbal angles. Therefore, when the optimal
control is implemented in the closed-loop, unpredictable interactions
between the nominal open-loop trajectories and the steering law can
cause the system to fail to meet its objective. For example, the control
action of the feedback law can perturb the CMGs toward a singular
state even though the optimal gimbal trajectories are far from
singularities.
One of the few papers to study the implementation of closed-loop

optimal slew maneuvers for CMG systems is the work of McFarland
et al. [2], who implemented real-time optimal control for a small
CMG testbed located at the United States Air Force Institute of
Technology. In this approach, the optimal gimbal rates can be fed
forward to the CMGs, thereby sidestepping the need for a traditional

steering law. The practical challengewith real-time optimal control is
that an algorithm must be embedded as part of the flight control
software. While the technology readily exists for doing so (see [3]),
the costs associated with flight software changes typically preclude
the industry from adopting this “risky” approach.
In response to the current state of the art, this note proposes a new

approach for enhancing the agility of a CMG satellite that can be
implemented using conventional attitude control architectures and
without the need to change the flight hardware. It is shown that it is
wpossible to account for the perturbations introduced due to feedback
a priori, during maneuver design, through the development of a
tychastic [4] optimal control constraint. This constraint allows the
control authority of the CMG array to be maintained despite sig-
nificant uncertainty in the evolution of the gimbal angles from their
nominal trajectories. The approach thus provides a margin for
feedback, which is calculable in a statistical sense. The resulting non-
standard optimal control problems are solved using the Riemann–
Stieltjes optimal control framework [5–7]. Experimental results from a
series of tests performed on Honeywell’s momentum control system
testbed are presented for both nominal and off-nominal operating
conditions to illustrate the feasibility of implementing the approach on
a practical CMG attitude control system.

II. CMG Attitude Control

A. System Model

The standard equation expressing the rotational dynamics of a
CMG spacecraft is given by [8]:

J _ω� ω × Jω� ω × h� _h � 0 (1)

where matrix J is the inertia tensor of the spacecraft including the
CMGs, ω is the vector of spacecraft angular rates, and h is the
momentum vector of the CMG array expressed in the body frame.
The momentum vector of each CMG hi can be expressed with

respect to a fixed frame, p, through a transformation of the form (see
Fig. 1)

hi � JsΩs

"
cos�αi� cos�β� sin�δi� � sin�αi� cos�δi�
− sin�αi� cos�β� sin�δi� � cos�αi� cos�δi�

sin�β� sin�δi�

#
(2)

where Js is the rotor inertia about the spin axis and Ωs is the rotor
angular rate. Angles αi and β denote the base circle spacing angle and
the fixed pyramid skewangle, respectively.Δi is theCMGgimbal angle
The torques expressed in frame p are

Xn
i�1

_hi � JsΩsA�Δ� _Δ (3)

where Δ � �δ1; δ2; : : : ; δn�T and the columns of matrix A�Δ� �
�a1�δ1�ja2�δ2�j · · · an�δn�� are obtained by differentiating the indi-
vidual CMG momentum vectors with respect to time and separating
the resulting _δ terms. For example, differentiating Eq. (2) and separat-
ing _δ gives the torque due to CMG i as

_hi� JsΩsai _δi� JsΩs

"
cos�αi�cos�β�cos�δi�− sin�αi�sin�δi�
−sin�αi�cos�β�cos�δi�−cos�αi�sin�δi�

sin�β�cos�δi�

#
_δi

(4)

Using the above definitions for the CMG angular momentum
vector and its time derivative, and by representing the attitude
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kinematics using quaternions, a system of nonlinear ordinary differ-
ential equations describing the dynamics of the spacecraft can be
written as

_x�

2
64

_q
_q4
_ω
_Δ

3
75�

2
64

1
2
�q4ω−ω×q�
−1

2
ωTq

J−1
n
−ω×

�
Jω�Rp

P
n
i�1hi

�
−JsΩsRpA�Δ�u

o
u

3
75
(5)

where Rp is a rotation matrix relating the CMG pallet frame to the
spacecraft body frame.

B. Feedback Control Architecture

The block diagram of a feedback architecture that can be used
to implement optimal attitude maneuvers is shown in Fig. 2. The
feedback system comprises an attitude estimator, a feedback law, and
a CMG steering law. The feedback law provides a torque command,
τc, in the spacecraft body frame to drive the error between the com-
manded optimal attitude and rate, qc�t� and ωc�t�, and the estimated
attitude and rate, q̂ and ω̂, to zero. The role of the steering law is to
allocate the feedback torque among the individual CMGs in terms of

a set of corrective gimbal rate commands, _Δfb. Because the open-loop
control allocation problem is solved as part of the optimal control

problem [9], gimbal rate feedforward commands, _Δc, are also avail-
able to drive the CMG gimbals directly. If the nominal plant model

closely matches the actual satellite dynamics, _Δfb�t� ≈ 0 and the
maneuver implementation will be successful. In practice, however,
parametric and other uncertainties, for example, gimbal angle drift,

cause _Δfb�t� ≠ 0 due to the discrepancy between the modeled and
actual rotational dynamics. In this case, the feedback implementation
of the optimal control solution can fail due to the introduction of
feedback commands that drive the CMG gimbals away from the
optimal control solution. The failure is manifest as a reduction in the
control authority of the CMG array, possibly to zero, leading to a
temporary loss of control of the satellite. This problem can prevent
successful implementation of optimal control solutions on practical
systems. The Riemann–Stieltjes optimal control framework
described in the next section provides a mechanism for ameliorating
this issue. The key idea is the formulation of a nonstandard optimal
control problem that provides different gimbal angle trajectories than
a standard optimal control solution. These new gimbal angle
trajectories desensitize the variation in the CMG singularity index
(a measure of CMG control authority) to large perturbations in the
orientations of the gimbals that can occur due to feedback. Using
this framework, feedback authority can therefore be purposefully

reserved to counteract the effects of system uncertainties so that the
optimal control solution can be successfully implemented in a
feedback setting.

III. Application of Riemann–Stieltjes Optimal Control

A standard formulation of the point-to-point maneuver design
problem for a CMG spacecraft can be expressed as [9–11]

PSTD�x0; xf�∶

8>>>><
>>>>:

Minimize J�x�·�; u�·�; t� � tf − t0
Subject to _x � f�x; u; t�

x0 � �q�t0�;ω�t0�;Δ�t0��T
xf � �q�tf�;ω�tf�;Δ�tf��T
h�x;u; t� ≤ 0

(6)

where the symbol PSTD�x0; xf� is used to emphasize that the bound-
ary conditions on the problem change between individual point-
to-point maneuvers. For satellite imaging problems, an additional
complication arises because the boundary conditions are dependent
on the specific values of t0 and tf. This is a result of the relative

motion between the satellite and the coordinates of area to be imaged.
The correct boundary conditions at any instant in timemust therefore
be embedded as part of the optimal control problem formulation. In
addition, the momentum state of the CMG array at the beginning and
end of each maneuver must be consistent with the initial and final
satellite angular rates (which are generally nonzero for Earth imaging
applications) and account for any environmental disturbances accu-
mulated during the maneuver. To design maneuvers that can be
implemented on a real spacecraft system, it is also necessary to define
additional constraints on the states and/or controls, such as the
quaternion norm condition and the conservation of angular momen-
tum. This is accomplished by defining the appropriate constraints
h�x; u; t� ≤ 0 for the optimal control problem. The solution of
problemPSTD Eq. (6) gives the state-control function pair t→ �x; u�,
where u � _Δc, that drives the satellite having dynamics given by
Eq. (5), as quickly as possible between the operationally specified
boundary conditions.
For feedback implementation of optimal CMG slews, it is neces-

sary to additionally ensure that some margin of control authority can
be reserved for feedback. One practical measure of the available
margin of a CMG array is the singularity index [12] given by

S�Δ� �
�����������������������������������
det�A�Δ�AT�Δ��

q
(7)

A pragmatic approach for developing a feedback margin is to
introduce the constraint hS�x;u; t� ≔ S�Δ�t�� ≥ Smin, where Smin is
some appropriately chosen nonzero value. The inequality S�Δ�t�� ≥
Smin guarantees that the CMG array can be maintained in a steerable
state about the nominal control trajectory. Assume now that, due to

the effects of feedback, the optimal control trajectory u�t� � _Δc�t� is
perturbed by an amount _Δfb�t�, so that the gimbal rate commands

seen by the CMGs are _Δ�t� � _Δc�t� � _Δfb�t�. The resulting

evolution of the gimbal angles is Δ�t� � ∫ tt0
_Δc�t� dt� ∫ tt0

_Δfb�t� dt
≠ ∫ tt0

_Δc�t� dt. In practice, the exact values of _Δfb�t� are not known a
priori andmay become quite large. Thus, the actual values ofS�Δ�t��
can deviate significantly from nominal. As a consequence, the action
of the feedback loop may cause the violation of constraint S�Δ�t�� ≥

Fig. 1 Momentum vector h of a CMG in relation to a fixed frame, p.

feedback
law

CMGs spacecraft

attitude
estimator

steering
law

Fig. 2 Control system block diagram for optimal attitude control of a CMG spacecraft.
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Smin when themaneuver is implemented. In fact, as will be seen later,
the condition S�Δ�t�� ≪ Smin can occur and cause the steering to
become singular. Rather than reserving a larger margin on control
authority by increasing the value of Smin (this can increase maneuver
times to the point of operational infeasibility), we employ the newly
developed framework of Riemann–Stieltjes optimal control [5–7]
and implement a tychastic constraint on S�Δ�t��.
To construct the Riemann–Stieltjes optimal control problem for

agile CMGmaneuvering, it is useful to appreciate the fact that, in the
present application, feedback is available to accommodate system
uncertainties. This allows the original Riemann–Stieltjes optimal
control problem [5], which was developed for uncertainty manage-
ment in an open-loop setting, to be significantly reduced in scope.
Instead of finding a single control history, Δ�c�t�, that drives the
uncertain satellite dynamics to the prescribed terminal state in the
open loop, all that is necessary is to ensure that a margin for feedback
can be made available by managing the configuration of the CMGs
along the optimal trajectory. This can be done by properly
constraining the allowable variation in S�Δ�t��.
While the precise nature of _Δfb�t� resulting from the feedback

implementation of a solution to Eq. (6) is impossible to know in
advance, the perturbation induced by steering about the nominal
trajectory can be approximated. For example, it is possible to model
the value of the instantaneous gimbal angle for each CMG using a

Normal distribution,N �μi; σ2�, where μi is the nominal (mean) value
of the gimbal angle for CMG i and σ is the presumed standard
deviation from the mean (the statistical off-nominal perturbation). At
each instant in time, the statistics on S�Δ�t�� are computed as a
multidimensional Riemann–Stieltjes integral. For example, the
expected value of S�Δ�t�� may be computed as

E�S�Δ�t��� �
Z Z

· · ·

Z
S�δ1�t�; δ2�t�; : : : ; δn�t��

dΦ
�
δ1�t� − μ1�t�

σ2

�
dΦ
�
δ2�t� − μ2�t�

σ2

�
dΦ
�
δn�t� − μn�t�

σ2

�
(8)

Equation (8) allows the mean value of the uncertain CMG singu-
larity index to be computed along the nominal gimbal angle trajec-
tories. Because Eq. (7) is a nonlinear equation, we note that the values
of E�S�Δ�� are generally not the same as the values S�Δnom�. The
following constraint on the CMG singularity index may thus be used
in the Riemann–Stieltjes optimal control problem formulation:

h1�x; u; t� ≔ E�S�Δ�t��� ≥ Smin (9)

To illustrate the utility of constraint (9), Fig. 3 provides typical
probability distributions (PDs) of the CMG singularity index of an
array of four CMGs. An example bound Smin � 0.5 on constraint (9)
is also marked on the plot. The results were obtained from a

Monte Carlo analysis with an assumed gimbal angle uncertainty of
σ � 10°. Two cases are given. In the first, the nominal gimbal angles
correspond to a zero-net momentum condition (a typical nominal
configuration at the beginning of amaneuver). In the second case, the
gimbal angles correspond to a situation where a large momentum has
been transferred to the satellite by the CMGs (a possible configu-
ration encountered during an agile slew). Referring to the variation in
the CMG singularity index for the zero-net momentum condition
(solid line), it is seen that only the tail of the PD lies belowSmin � 0.5.
In this case, the probability of violating the specified constraint (9) is
quite small, PrfS�Δ� < 0.5�g ≈ 0.003. For the example CMG con-
figuration encountered during the slew (dashed line), the constraint
E�S�Δ�t��� ≥ 0.5 is also satisfied. Yet, a large portion of the PD lies
below the specified bound, that is, PrfS�Δ� < 0.5g ≈ 0.38. As a
consequence, if this particular set of gimbal angleswas to formpart of
an optimal control trajectory, there is a reasonably good chance that
constraint (9) would be violated due to the action of the feedback
controller. Furthermore, in some cases, the singularity index is ob-
served to become zero, indicating that a singular configuration of the
CMGs is possible if the off-nominal perturbations become large
enough. This condition could lead to the failure of the maneuver.
In light of the observations described above, construction of a

different constraint appears to be necessary for operational success.
Because the goal is to ensure that somemargin on control can always
be retained for feedback, it would be more appropriate to build a
constraint that ensures that PrfS�Δ� < Sming is as small as possible.
One approach for providing a (statistically) guaranteed margin on
feedback is to formulate a constraint in which PrfS�Δ� ≤ μS
−3σSg < ϵ, where subscript S is used to refer to the statistics of S�Δ�
and ϵ is an appropriately chosen small number. The relevant
constraint on the CMG gimbal angles then becomes

h2�x;u; t�≔E�S�Δ�t���−3fE��S�Δ�t��−E�S�Δ�t���2�g1∕2 ≥Smin

(10)

Because Eq. (10) constrains the 3σ values of the mean singularity
index to lie above the lower bound Smin, the constraint automatically
satisfies (9). In the context of Fig. 3, satisfying Eq. (10) implies that a
new set of nominal gimbal angles should be found to shift the PDof the
troublesome CMG configuration to the right as illustrated in Fig. 4.
Clearly, finding the gimbal angles that satisfy Eq. (10) involves the
computation of higher-order expectations. The resulting Riemann–
Stieltjes optimal control problem formulation for agile CMG maneu-
vering may now be written as

PRS�X0;Xf�∶

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

Minimize J�X�·�;u�·�;t��tf−t0
Subject to _x1�f�x1;u;t�

_x2�f�x2;u;t�
..
.

_xN�f�xN;u;t�
x01��q�t0�;ω�t0�;Δ1�t0��T
x02��q�t0�;ω�t0�;Δ2�t0��T

..

.

x0N��q�t0�;ω�t0�;ΔN�t0��T
xf1��q�tf�;ω�tf�;Δ1�tf��T
Δi�t0�∼N �Δnom�t0�;σ2I4×4�
Smin≤E�S�Δ�t���−3fE�S�Δ�t��−E�S�Δ�t���2g1∕2
h�x;u;t�≤0

(11)

In Eq. (11), the approximated effects of the perturbations due to
feedback are captured as uncertainties in the gimbal angle initial
conditions. The gimbal angle uncertainties haveNormal distributions

centered on the nominal initial conditions, each with variance σ2.
The uncertainty is propagated via copies of f�x; u; t� (see [5–7] for
details) so that the expectations on theCMGsingularity indexmay be
computed over the optimal trajectory. Additional requirements on
the conservation of angular momentum and the quaternion norm for
each copy of f�x; u; t� are embodied in the additional constraints

0 0.5 1 1.5 2

pr
ob

ab
ili

ty

0

0.004

0.008

0.012

Fig. 3 Probability distributions of the singularity index for two example

gimbal angle configurations. Solid line, possible CMG configuration at
the beginning of a slew; dashed line, possible CMG configuration during
an agile slew.
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h�x; u; t�, given in (11). We note that Eq. (11) is a simplified form of
the original Riemann–Stieltjes optimal control problem [5] because
the end-point conditions must only be satisfied for the nominal plant
(denoted in Eq. (11) by subscript 1). It is not necessary to constrain
the terminal states for the other copies of f�x; u; t� because the
feedback control will be used to correct any deviations thatmay occur
due to the considered Δ uncertainty.
Having formulated an appropriate Riemann–Stieltjes optimal

control problem, there remains the question of how many copies of
f�x; u; t� are required to accurately approximate the Riemann–
Stieltjes integrals needed to compute the expectations. One approach
is to solve the problem using pseudospectral methods [3] and
Monte Carlo sampling, but a very large number of samples (greater
than 1000) are generally required. To reduce the dimension of the
problem, it is better to use sigma points [6,7] or hyper-pseudospectral
(HS) points [5], r � �r01; r02; : : : ; r0N �T at t � t0, which, along with a
set of associated weights, w � �w1; w2; : : : ; wN �T , provide an effi-
cient cubature formula for approximating Riemann–Stieltjes integrals
of the form

P
N
i�1 wiE�ri�. To determine the appropriate number of

discretization points for solving (11), the first n moments of the
singularity index PDmay be computed. Because transformation (7) is
nonlinear, the benchmarkmoments are determined fromaMonteCarlo
simulation. The results are summarized in Table 1 along with the
number of points used for the computation. To evaluate the second-
order expectations in Eq. (10), an accurate estimate of the moments up
to order two is required. Table 1 shows that this requirement can bemet
by using either set of HS points, but not the sigma points. To pose
problem PRS with the smallest number of points, the fifth-order HS
points where N � 23 are used.

IV. Experimental Results

In this section, Riemann–Stieltjes optimal control solutions are
implemented on the Honeywell momentum control system testbed, a
hardware-in-the-loop satellite simulator (see Fig. 5). This ground test
system is about 3000 lbs and floats on an airbearing at Honeywell’s
test facility near Phoenix, AZ. In the experiments, the momentum
control system testbed was configured with the Air Force Research
Laboratory’s miniature momentum control system [13]. The labora-
tory experiments mimicked the operational environment of a typical

imaging satellite where the objective was to design and implement
agile CMG maneuvers for point-to-point image collection.
A schematic illustrating the path of the satellite boresight (pro-

jected onto the Earth) for successful collection of four images is
shown in Fig. 6. In Fig. 6, the presorted collection regions are denoted
by the shaded areas. To acquire the imagery product, it is necessary
for the satellite boresight to traverse through the center of each
collection region as shown by the solid red lines. Note that, in this
representation, it is not necessary that the boresight traces extend
beyond the shaded collection regions (as is shown for clarity of the
illustration). Because of the relativemotion between the Earth and the
satellite moving along its ground track, performing the imaging task
requires careful coordination of the satellite attitude and rate so that
specified tolerances on the attitude and rate tracking error during
imaging can be satisfied. Meeting these stringent requirements
during imaging is handled by the feedback controller. To facilitate
rapid image acquisition, however, the boundary conditions on each
point-to-point maneuver are made to be consistent with the attitude
and rate conditions required for imaging each region. By designing
the appropriate nonrest maneuvers using optimal control, the transi-
tion between the maneuvering and imaging operations can be han-
dled in a seamless fashion.
To establish the baseline performance, a sequence of shortest-time

maneuvers was designed using the standard optimal control formula-
tion given in Eq. (6). The value of Smin was specified as 0.45. The
designedmaneuver sequencewas then implemented on the hardware
testbed, in the open loop, by driving the CMGs directly using the
solved optimal gimbal rate commands. The results of the experiment
are shown in Fig. 7. Referring to Fig. 7a, it is apparent that open-loop
maneuvering allows the satellite boresight to pass roughly through
the various collection regions. The pointing error due to system un-

Table 1 Estimated centralmoments of a typical singularity index PD

Central
moment

Monte Carlo
(benchmark)

Sigma points
(3rd order)

HS points
(5th order)

HS points
(7th order)

μ1 0 0 0 0
μ2 �3.68 × 10−2 �3.51 × 10−2 �3.68 × 10−2 �3.68 × 10−2

μ3 −2.71 × 10−3 0 −2.86 × 10−3 −2.74 × 10−3

μ4 �3.95 × 10−3 �1.24 × 10−3 �3.94 × 10−3 �3.95 × 10−3

N-points 106 8 23 52

MMCS

flight
computer

batteries

air
bearing

IMU

Fig. 5 Honeywell’smomentum control system testbed outfittedwith the
Air Force Research Laboratory’s miniature momentum control system.
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Fig. 6 Traces of the satellite boresight path (solid red lines) required for
successful image collection.
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Fig. 4 Illustrating the satisfaction of constraint (10) by finding a new set
of nominal gimbal angles that shifts the probability distribution to the
right.
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certainties is, however, too large for successful imaging. The varia-
tion of the CMG singularity index S�Δ�t�� for the open-loop
implementation is shown in Fig. 7b. As is seen, the imposed con-
straintS�Δ�t�� ≥ 0.45 has not beenviolated. Therefore, some control
authority remains so that feedback can be used in an attempt to correct
the pointing errors.
In the next experiment, the shortest-time maneuvers were

implemented using the feedback architecture of Fig. 2. The results of
the closed-loop ground test are given in Fig. 8. Figure 8a shows that
the imaging system properly collects the first image as the satellite
boresight tracks the required path through the collection region.
Despite the closure of the attitude loop, however, the remaining
images cannot be acquired at the specified collection times. As shown
by the trace of the boresight motion, the imaging sensor behaves
erratically near each collection region and sometimes crosses the
collection region at an angle perpendicular to the required scan direc-
tion. This implies that when the imaging sensor is activated, accord-
ing the schedule stored in the satellite command buffer, the incorrect
and/or blurred images will be obtained.
The reason for the incorrect behavior of the satellite is the fact that

the interaction between the nominal open-loop gimbal rate com-
mands (fed forward into the control loop) and the actions demanded
by the error-driven feedback system causes theCMGarray to become
singular. This is clearly indicated by the time history of the CMG
singularity index shown in Fig. 8b. Note that the singularities occur
despite the fact that the time history of the nominal singularity index
S�Δ�nom adheres to the imposed constraint on Smin (see Fig. 8b).
During the periods of time when the CMG array is in the singular
state, feedback control of the satellite is temporarily lost. While the
attitude control system can eventually recover and regain control of
the satellite, the singular operation of the CMGs causes the attitude to
drift far enough away from the desired path that successful collection
of the imagery product is generally not possible.
The sequence of agile maneuvers was next re-designed using the

Riemann–Stieltjes optimal control formulation given in Eq. (11). In

solving theRiemann–Stieltjes problem, it was desired tomaintain the
3σ variation of the CMG singularity index above the threshold
Smin � 0.45 (the same value used in solving the standard optimal
control problem). The standard deviation of each CMG gimbal angle
from nominal was assumed to be σ � 10°. As discussed in the
previous section, the satisfaction of tychastic constraint (10) ensures
that only the tail of the singularity index PD will lie below the spec-
ified value of Smin. The Riemann–Stieltjes optimal control therefore
provides gimbal angle trajectories where the probability that of
S�Δ� < Smin, due to feedback perturbations, will be small. The
experimental implementation of the Riemann–Stieltjes solution is
shown in Fig. 9. Referring to Fig. 9a, the imaging system is now able
to acquire all four of the requested images as evidenced by the path of
the boresight trace, which now passes directly through the center of
each image collection region within the error tolerances required for
imaging. The success of the closed-loop implementation of the
Riemann–Stieltjes optimal control is a direct result of the overall
improvement in the nominal CMG configuration (see S�Δ�nom in
Fig. 9b) that is made possible by desensitizing the variation in the
singularity index to large changes in the CMG gimbal angles from
their nominal trajectories. The time history of the actual singularity
index for the Riemann–Stieltjes optimal control experiment is
observed to lie well within the 3σ envelope as shown in Fig. 9b.
Several additional experiments in which the CMG gimbals were

purposefully perturbed from their nominal initial conditions were
also performed to further evaluate the performance of the Riemann–
Stieltjes optimal control. These tests emulate a practical operating
environment where a range of off-nominal operating conditions, for
example, due to gimbal angle drift, must be accommodated for mis-
sion success. The perturbations in the initial gimbal angles from
nominal were selected randomly using a Normal distribution with
μ � 0 and σ � 10°. Both zero-net momentum and momentum-
biased initial conditions were considered. In these cases, the imple-
mentation of the Riemann–Stieltjes optimal control in concert with
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Fig. 7 Ground test results for open-loop CMG maneuvering using
standard optimal control: a) boresight trace; b) CMG singularity index.
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Fig 8 Ground test results for closed-loop CMG maneuvering using
standard optimal control: a) boresight trace; b) nominal andactualCMG
singularity index.
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the conventional feedback controller allowed the imaging process to
be successfully completed despite the off-nominal perturbations.
Some ground test results are presented in Fig. 10. Referring to the

boresight traces (Fig. 10a), it is observed that nearly the same
boresight path is followed for each experiment. This is due to the
corrective action of the feedback controller, which allows the nomi-
nal attitude trajectory to be reproduced despite the uncertainty in the
gimbal states. Figure 10b shows that although the singularity index
can vary significantly as the CMG gimbals are commanded off of
their nominal trajectories, the variations are maintained above the
design threshold Smin � 0.45. This ensures that sufficient control
authority is retained for feedback.

V. Conclusions

This note presents a new approach for designing shortest-time
maneuvers to enhance the agility of an imaging satellite usingCMGs.
The maneuvers can be implemented using conventional attitude con-
trol architectures and without the need to change the flight hardware.
Because standard optimal control solutions provide open-loop con-
trols based on a nominal model of the plant, feedback is needed to
implement shortest-time maneuvers in an operational setting. How-
ever, when implemented in the closed loop, unpredictable interac-
tions between the nominal open-loop controls and the feedback law
can cause the system to fail to perform as expected. To eliminate this
issue, a Riemann–Stieltjes optimal control problem with a tychastic
constraint can be solved instead. The proposed tychastic constraint
ensures that off-nominal variations in the CMG singularity index,
which occur due to feedback, can be properlymanaged so that control
authority for feedback can be retained above a specified threshold.
Experimental implementation on Honeywell’s momentum control
systems testbed verified that Riemann–Stieltjes optimal control solu-
tions can be successfully implemented in a gourd test environment
with real CMG hardware in the loop.
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