
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports Faculty and Researchers' Publications

2022

Bipartite Graph Learning for Autonomous
Task-to-Sensor Optimization

Karpenko, Mark; Ross, Isaac M.; Proulx, Ronald J.;
Magallanes, Lara C.
Monterey, California: Naval Postgraduate School

https://hdl.handle.net/10945/71883

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NPS-MAE-22-002

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

BIPARTITE GRAPH LEARNING FOR AUTONOMOUS
TASK-TO-SENSOR OPTIMIZAITON

by

Mark Karpenko (MAE)
Ronald. J. Proulx (SSAG)

LT Michael Zepeda USN (MAE)

October 2022

Distribution Statement A: Approved for public release. Distribution
is unlimited.

Prepared for: Naval Special Warfare Command. This research is supported by funding
from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098).

NRP Project ID: NPS-22-N192-B

THIS PAGE INTENTIONALLY LEFT BLANK

i STANDARD FORM 298 (REV. 5/2020)

Prescribed by ANSI Std. Z39.18

REPORT DOCUMENTATION PAGE

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE
10/14/2022

2. REPORT TYPE
Technical Report

3. DATES COVERED

START DATE
10/21/2021

END DATE
10/22/2022

4. TITLE AND SUBTITLE
BIPARTITE GRAPH LEARNING FOR AUTONOMOUS TASK-TO-SENSOR OPTIMIZAITON

5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

 0605853N/2098

5d. PROJECT NUMBER

 NPS-22-N192-B; W2223

5e. TASK NUMBER 5f. WORK UNIT NUMBER

6. AUTHOR(S)
Mark Karpenko, Ronald J. Proulx, LT Michael Zepeda USN

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Control and Optimization Laboratories
Department for Mechanical and Aerospace Engineering
Naval Postgraduate School
Monterey, CA, 93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

NPS-MAE-22-002

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

NRP, Naval Special Warfare Command

10. SPONSOR/MONITOR'S
ACRONYM(S)
NRP;
NAVSPECWARCOM

11. SPONSOR/MONITOR'S
REPORT NUMBER(S)
NPS-MAE-22-002;
NPS-22-N192-B

12. DISTRIBUTION/AVAILABILITY STATEMENT
Distribution statement A: Approved for public release. Distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This study explores the question of how machine learning can be applied to identify the most appropriate ‘sensor’ for a task by optimizing task-to-sensor matching.
The concept of a bipartite graph provides a mathematical framework for task-to-sensor mapping by establishing connectivity between various high-level tasks and
the specific sensors and/or processes that must be invoked to fulfil those tasks and other mission requirements. The connectivity map embedded in the bipartite
graph can change depending on the availability/unavailability of resources, the presence of constraints (physics, operational, sequencing), and the satisfaction of
individual tasks. All of these considerations may be encoded in the value matrix of the graph. Changes can also occur according to the valuation, re-assignment
and re-valuation of the perceived task benefit and how the completion of a specific task (or group of tasks) can contribute to the state of knowledge prompting the
periodically re-solve the matching. The results of this study show that a deep neural network architecture can be used to solve the bipartite matching problem in an
autonomous fashion. The scalability of the problem is demonstrated using an 800 by 800 graph. Learning acceleration is also studied and it is recommended that
this aspect be further explored as part of future investigations.
15. SUBJECT TERMS
bipartite graphs, matching problems, assignment problems, machine learning, deep learning, residual networks, large scale problems, accelerated
learning

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
24 a. REPORT

unclassified
b. ABSTRACT
unclassified

C. THIS PAGE
unclassified

19a. NAME OF RESPONSIBLE PERSON
Mark Karpenko

19b. PHONE NUMBER (Include area code)
831-656-3231

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943-5000

Ann E. Rondeau Scott Gartner
President Provost

The report entitled “Bipartite Graph Learning for Autonomous Task-to-Sensor
Optimization” was prepared for Naval Special Warfare Command and funded by the Naval
Postgraduate School, Naval Research Program (PE 0605853N/2098).

Distribution Statement A: Approved for public release. Distribution is unlimited.

This report was prepared by:

________________________ ________________________
 Mark Karpenko Ronald J. Proulx
 Research Professor Research Professor

 LT Michael Zepeda, USN
 MS Student (591)

Reviewed by: Released by:

________________________ ________________________
 Brian Bingham, Chairman Kevin B. Smith
 Mechanical and Aerospace Vice Provost for Research
 Engineering

 2

THIS PAGE INTENTIONALLY LEFT BLANK

 3

ABSTRACT

This study explores the question of how machine learning can be applied to identify the
most appropriate ‘sensor’ for a task by optimizing task-to-sensor matching. The concept of
a bipartite graph provides a mathematical framework for task-to-sensor mapping by
establishing connectivity between various high-level tasks and the specific sensors and/or
processes that must be invoked to fulfil those tasks and other mission requirements. The
connectivity map embedded in the bipartite graph can change depending on the
availability/unavailability of resources, the presence of constraints (physics, operational,
sequencing), and the satisfaction of individual tasks. All of these considerations may be
encoded in the value matrix of the graph. Changes can also occur according to the
valuation, re-assignment and re-valuation of the perceived task benefit and how the
completion of a specific task (or group of tasks) can contribute to the state of knowledge
prompting the periodically re-solve the matching. The results of this study show that a deep
neural network architecture can be used to solve the bipartite matching problem in an
autonomous fashion. The scalability of the problem is demonstrated using an 800 by 800
graph. Learning acceleration is also studied and it is recommended that this aspect be
further explored as part of future investigations.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

A. BACKGROUND

A graph G is bipartite if the vertex set V(G) can be partitioned into two sets U and V in
such a way that no two vertices from the same set are adjacent. The sets U and V are called
color classes of G and (U, V) is a bipartition of U and V. In fact, the vertices of G can be
colored with at most two colors, so that no two adjacent vertices have the same color. A
graph is called m by n bipartite, if |U| = m and |V| = n. Bipartite graphs can also be multi-
layered to represent complex relationships between the vertices. This is one reason why
machine learning can be beneficial. That is, machine learning can identify relationships in
a deep bipartite graph that may not be obvious by inspection. Bipartite representations can
mathematically characterize large data sets and can be extremely advantageous to facilitate
autonomous decision making. In this study, the development is restricted to single-layer
bipartite graphs, though the results could be extended to deeper graphs as part of future
work. In the context of a DoD problem space, the connectivity graph between the state of
knowledge, high-level tasks and the optimal matching to individual sensors, can be
periodically re-evaluated to provide appropriate online/real-time information for
automating decision making and operations. One application area is joint targeting and
fires.

B. MATHEMATICAL PROBLEM FORMUALTION

Decision making for task-to-sensor assignment can be abstracted as a bipartite matching
problem, which can be written and solved as a constrained minimization program. The n
by m bipartite matching problem can be specified as:

Minimize � � 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖
𝑚𝑚

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

(1)
Subject to � 𝑥𝑥𝑖𝑖𝑖𝑖 = 1

𝑛𝑛

𝑖𝑖=1
 (𝑗𝑗 = 1, 2, 3, . . . m)

 � 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 (𝑖𝑖 = 1, 2, 3, . . .𝑛𝑛)
𝑚𝑚

𝑗𝑗=1

 𝑥𝑥𝑖𝑖𝑖𝑖 = �1
0
𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

In the specification of the optimization problem, the matrix of binary decision variables 𝑥𝑥𝑖𝑖𝑖𝑖
represents all possible the task-to-sensor pairings and 𝑐𝑐𝑖𝑖𝑖𝑖 are the entries of the assignment
cost matrix. The one-to-one mapping of the bipartite graph is enforced by the constraint
equations that ensure that there can be only a single non-zero entry in each row and each
column of the matrix x.

 6

C. CONVENTIONAL SOLUTION APPROACH

The optimization problem (1), is typically solved via its ‘dual’ through the introduction of
dual variables u and v. The dual problem can be seen in (2) below. Duality theory requires
that the optimal solution satisfies complementary slackness, which is that the dual variables
satisfy (3).

Maximize � 𝑢𝑢𝑖𝑖
𝑛𝑛

𝑖𝑖=1
+ � 𝑣𝑣𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑖𝑖

(2) Subject to 𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑗𝑗 ≤ 𝑐𝑐𝑖𝑖𝑖𝑖 (𝑖𝑖 = 1,2,3, …𝑛𝑛),
 (𝑗𝑗 = 1,2,3, … ,𝑚𝑚

 𝑥𝑥𝑖𝑖𝑖𝑖�𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑗𝑗� = 0 (3)

The advantage of working with the dual problem is it allows the use a reduced cost matrix
C̅ which is generated by the row and column reduction of the primal cost matrix C, through
the use of the dual variables u and v respectively. An example of this is seen through a
partial solution by row reduction of C by subtracting from each row the minimum value of
that row and then column reducing C by the least column value of each column in
Figure 1. The row reduction column vector is u = (4 6 4 3), and the column reduction row
vector is v = (4 0 1 0). This row and column reduction is typical preprocessing and a
common first step in solving the bipartite matching optimization. It is a first attempt at
determining the dual variables and the primal solution.

Figure 1. Transforming an example assignment cost matrix C to reduced cost

matrix C̅. The transformation is performed through row reduction with
u = (4 6 4 3), and column reduction through v = (4 0 1 0). The underlined entries

correspond to the assigned vertices.

Using C̅, the partial primal solution to the problem can be attempted by setting the matching
according to the underlined zeros in the reduced cost matrix. That is, 𝑢𝑢1 → 𝑣𝑣2 and 𝑢𝑢2 →
𝑣𝑣1. Other candidate matchings are obtained from the dual problem for each c̅ij = 0 entry,
subject to the constraint of only one allowed match per row and column. Graphically this
is represented in Figure 2. The set of vertices U corresponds to the set of tasks and the set
of vertices V corresponds to the set of sensors to be assigned. The edges, E, are valid
connections (matchings) between the vertices which satisfy the constraint of c̅ij = 0. The

 7

arrowed connections denote the chosen assignments determined from C̅, while the other
connections represent the other possible assignments. The partial primal solution for the
chosen dual variables is represented by the vector row(j) = (2 1 0 0), where row(j) currently
indicates that the first row is assigned to the second column, the second row to the first
column and rows 3 and 4 are currently unassigned. The definition for ‘row(j)’ is laid out
in (4). It may also be useful to look at the partial solution in terms of the columns instead
of rows and this point of view is denoted by φ(i) in (5).

𝑟𝑟𝑟𝑟𝑟𝑟(𝑗𝑗) = �𝑖𝑖 0
 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗 is assigned 𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑗𝑗 = 1, 2, … . .𝑚𝑚) (4)

𝜑𝜑(𝑖𝑖) = �𝑗𝑗 0
 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗

 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑖𝑖 = 1, 2, … . .𝑛𝑛) (5)

Figure 2. Intermediate bipartite graph G0 = (U, V; E). The vertices U and V are
encoded in the rows and the columns respectively of C̅. Set E is the set of

candidate edges (matchings) denoted by the lines between U and V.

1. Alternating the Bipartite Graph

In order to iterate the assignments to solve the bipartite matching, a variety of different
algorithms can be used. The Hungarian Algorithm is one of these that operates by
alternating the edges of the bipartite graph Gi = (U, V; Ei), to try to find an additional edge
matching. If the attempt is succesful, then the partial primal solution, row(j), is updated. If
the attempt is unsuccessful, then the dual variables are adjusted such that the constraints
are still met and alternating of edges is attempted to produce a new bipartite graph Gi+1 =
(U, V; Ei+1). The process of alternating edges, updating primal, and editing the duals is
repeated until a complete matching of the bipartite graph is accomplished.

The process of alternating the edges described above is laid out in detail as the algorithm
Procedure Alternate(k) [1]. A couple of terms need to be defined for the purpose of
following the logic of this algorithm. SU and SV are the scanned vertices U and V

 8

repsectivily. LV is the labeled vertex of V, which means that the vertex has been assigned
as a possible primal solution. The variables predj and sink are used in the Hungarian(O4)
Algorithm which is covered later.

 Procedure Alternate(k)
Find an alternating tree rooted at an unassigned vertex k ∈ U.
SU := LV :=SV := Ø;
fail := false, sink := 0, i := k;
while (fail = false and sink = 0) do
 SU := SU ⋃ {i};
 for each j ∈ V \LV : cij - ui - vj = 0 do predj = i; LV := LV ⋃ {j};
 if LV \ SV = Ø then fail = true
 else
 let j be any vertex in LV \ SV;
 SV := SV ⋃ {j};
 if row(j) = 0 then sink := j else i := row(j)
 endif
endwhile
return sink

Working through Procedure Alternate(k) suggests an edge between U = 3 and V = 2 as
seen in Figure 3. Now, U = 1 has no valid connection so the alternating of edges has failed.
Procedure Alternate(k) therefore ends so that the dual variables can be updated. For G0 =
(U, V; E), Procedure Alternate(k) would have failed even if a different edge had been
alternated.

Figure 3. Alternating connecting edges using Algorithm Alternate(k). The straight

arrowed lines signify the assigned edges while the squiggled line shows the
remapping of the different edges resulting in a vertex with no possible

connection.

 9

2. Updating the Dual Variables and the Hungarian Algorithm

Updating of the dual variables can be done through the definition of a new variable δ as
in (6), in order to update the dual vairalbes accodirng to (7) and (8). In order for the update
to provide valid options without violating the constraints, certain conditions must be met.
The three conditions are [1]:

1) The labeled edges in Ei

 are still available after updating the dual variables. This is,
the corresponding entries c̅ij for the [i, j] in Ei remain unchanged with a zero value.

2) A new edge in Ei is added as a result of updating the dual variables.
3) Updating the dual variables still requires that c̅ij – ui – vj ≥ 0 for all values in C̅.

𝛿𝛿 = min(𝑐𝑐𝑖𝑖𝑖𝑖 – 𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑗𝑗) 𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆; 𝑗𝑗 ∈ 𝑉𝑉 \ 𝐿𝐿𝐿𝐿 (6)

𝑢𝑢𝑖𝑖 = 𝑢𝑢𝑖𝑖 + 𝛿𝛿 (𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆) (7)

𝑣𝑣𝑗𝑗 = 𝑣𝑣𝑗𝑗 − 𝛿𝛿 (𝑗𝑗 ∈ 𝐿𝐿𝐿𝐿) (8)

An grpahical example of the dual updating can be seen in Figure 4. Only the circled entries
are considered for δ giving a value of δ = 1. This results in u = (5 6 5 3) and v = (4 -1 1
0). With new edge connections being possible (see Figure 4b) one can alternate the edges
in the new graph Gi shown in Figure 5. Going back to the Algorithm Alternate(k) with
k = 3, no longer fails due to a deadend. Algorithm Alternate(k) instead terminates with a
new edge being added to the labeled vertices LV.

(a) (b)

Figure 4. Illustrating the dual variable update: (a) Using C̅ for finding δ and

updating the dual variables. Arrows indicate that i ∈ SU and j ∈ V \ LV resulting
in a δ = 1; (b) updated C̅ using the new dual variables u = (5 6 5 3) and
v = (4 -1 1 0).

 10

(a) (b)

Figure 5. Iterating the bipartite graph: (a) possible graph edges after updating the

dual variables (arrows indicate currently assigned edges); (b) alternating of the
edges resulting in an additional assigned edge.

The succesful augmenting of the edges results both in an update and addition to the primal
solution row(j). The Hungarian Algorithm(O4) is now used to update the primal solution
through the use of the sink variable [1]. The updated primal solution is contained in the
predj variable. The algorithm tracks the magnitude of |U̅| to determine when the algorithm
terminates. U̅ is defined as the subset of U for which the assigned vertices in the primal
solution are elements of. Updating the primal solution per the algorithm results in row(j) =
(3 1 2 0) and so U̅ = (1 2 3), Consequently, the only valid k ∉ U \ U̅ is k = 4. Proceeding
further with the Algorithm Alternate(k) results in no possible alternating branches as seen
in Figure 5b having no edge for u4 resulting in SU = (4), LV = SV = Ø. Updating the dual
variables again gives δ = 1, u = (5 6 5 4), and v reamaining constant at v = (4 -1 1 0). The
resulting C̅ from the updated duals is seen in Figure 6a. The resulting graph iterate is seen
in Figure 6b. Alternating the tree with k =4 results again in a dead end with a rearranging
of the assigned edges as seen in Figure 6c.

 Hungarian(O4) Algorithm
initialize u, v, row, φ and U̅:
while |U̅ |< n do
 let k be any vertex in U \ U̅;
 while k ∉ U̅ do ⋃ {j};
 sink := Alternate(k);
 if sink > 0 then
 U̅ := U̅ ⋃{k }, j := sink;
 repeat
 i := predj , row(j) := i, h :=φ(i), φ(i) := j, j := h
 until i = k
 else
 δ := min{cij – ui – vj : i ∈SU, j ∈ V \LV};
 for each i ∈ SU do ui := ui + δ;
 for each j ∈ LV do vi := vi - δ;
endif
endwhile
endwhile

 11

(a) (b) (c)

Figure 6. Further iteration of the bipartite graph: (a) C̅ after second update of the

dual variables; (b) possible re-mappings of the graph links with assigned
connections denoted by arrows; (c) re-organization of the edges via Algorithm

Alternate(k).

Algorithm Alternate(k) is applied again and terminates in failure triggering another update
of the dual variables. This update results in δ = 1, u = (6 6 6 4), and v = (3 -2 1 0). The
reduced cost matrix produced by the newly iterated dual variables is seen in Figure 7a.
Inspection of the reduced cost matrix shows that it gives a solution to the matching problm
since the complementary slackness conditions are fufilled. Matrix C̅ has unique null entries
for each column and row pair.

(a) (b) (c)

Figure 7. Further iteration of the bipartite graph: (a) C̅ after third update of the

dual variables; (b) re-organization of the edges via Algorithm Alternate(k);
(c) final application of Algorithm Alternate(k) results in termination of the

matching search – alternate branching does not reduce the cost.

 12

Applying the Algorithm Alternate(k) for the final time results in sink = 4, SU = LV = SV
= (1 2 3 4), predj = (1 4 3 2) – see Figures 7b and 7c. Updating the primal solution gives
row(j) = (1 4 3 2) and φ(i) = (1 4 3 2) which corresponds to the assignment matrix x as
seen in Figure 8a. The optimized assignment cost determed to be 25. This value is obtained
by adding together the cost associated with each vertex pairing – the circled entires in
Figure 8b for which xij=1.

(a) (b)

Figure 8. Final assignment for minimum cost bipartite matching problem: (a)
assignment matrix; (b) cost matrix C where the sum of circled (assigned) entries

gives the minimum cost.

D. NEURAL NETWORK REPRESETNATION

Machine learning can be used as an alternative to conventional algorithms (such as the ones
described in the previous section) for which computing time can vary greatly with the
dimension and structure of the problem. Machine learning can be advantageous over
conventional algorithms especially in online/real-time applications because it is possible
to transform the problem statement given in (1) into a differential equation. This
representation can be executed exceptionally quickly on hardware. As an example,
consider a residual network (see Figure 9) that implements a generic input-to-output
mapping by applying a sequence of layer-wise transformations on a hidden state [2]:

𝐡𝐡𝑖𝑖+1 = 𝐡𝐡𝑖𝑖 + 𝑓𝑓(𝐡𝐡𝑖𝑖, 𝜃𝜃𝑖𝑖) (9)

In equation (9), vector 𝐡𝐡𝑖𝑖 is the input of layer 𝑖𝑖 and vector 𝐡𝐡𝑖𝑖+1 is the output. Vector
function 𝑓𝑓 represents the processing applied via the layer weight parameters, 𝜃𝜃𝑖𝑖 , and
activation functions. Referring to Figure 9, the presence of the ‘skip’ connection, allows
some of the information to pass-through across the layers. This resolves issues with
vanishing gradients in deep networks [3].

 13

Figure 9. Schematic of a typical residual network illustrating the ‘skip’
connection.

The conventional residual neural network can be modified slightly by weighting the
relative contribution of the pass-through connection. The equation for the layer-wise
transformation can be re-written as

𝐡𝐡𝑖𝑖+1 = (1 − 𝜎𝜎)𝐡𝐡𝑖𝑖 + 𝜎𝜎𝜎𝜎(𝐡𝐡𝑖𝑖,𝜃𝜃𝑖𝑖) (10)

where 𝜎𝜎 is the weight. From a dynamical systems perspective, weighting the connections
as described helps to stabilize the dissipation of the error function energy, which facilitates
the learning process. Thus, the specific neural network architecture (weighted residual
network) studied for solving the bipartite matching problem is shown in Figure 10.

Figure 10. Schematic of a ‘weighted’ residual network used for solving the
bipartite matching problem.

E. ILLUSTRATIVE EXAMPLES

Several illustrative examples of the application of the deep neural network architecture of
Figure 10 are presented in this section. First, the problem presented in Section C is solved
using machine learning to illustrate that the same solution as the conventional approach
can be recovered using the neural network. Then, the problem size is increased in order to
explore the scalability of the concepts.

1. Small-Scale Test Problem

Consider the 4 × 4 matching problem of Section C, where the objective is to obtain the
maximum value assignment. The value matrix for the problem is repeated below:

 14

(11)

To objective of the machine learning problem is to produce (as the network output) the
optimal bipartite matching. There is one output neuron for each of the 4 × 4 = 16 possible
pairings. Figure 11 shows the evolution of the neural network outputs for the maximum
value matching. The interpretation of the curves is as follows: In Figure 11, each row, i,
and column, j, represents the activation, 𝑥𝑥𝑖𝑖𝑖𝑖, of the connection between input 𝑢𝑢𝑖𝑖 and output
𝑣𝑣𝑗𝑗 . If 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 then there is a connection from 𝑢𝑢𝑖𝑖 to 𝑣𝑣𝑗𝑗 . On the other hand, if 𝑥𝑥𝑖𝑖𝑖𝑖 = 0 then
there is no connection between 𝑢𝑢𝑖𝑖 to 𝑣𝑣𝑗𝑗 . From the plots, it is possible to extract the
minimum cost bipartite matching: 𝑢𝑢1 → 𝑣𝑣1, 𝑢𝑢2 → 𝑣𝑣4, 𝑢𝑢3 → 𝑣𝑣3, and 𝑢𝑢4 → 𝑣𝑣2. This results
in the bipartite graph shown in Figure 12. This is which is the same solution determined by
the conventional approach.

Figure 11. Evolution of the neural network outputs for minimum cost matching of
small-scale test problem

The neural network architecture was also applied to solve the ‘maximum value’ bipartite
matching by interpreting the cost matrix as 𝐶𝐶 = −𝑉𝑉 (see equation 11). Figure 13 shows the
evolution of the network outputs for the maximum value problem. The interpretation of the
curves is the same as before. Each row, i, and column, j, represents that strength, 𝑥𝑥𝑖𝑖𝑖𝑖, of the
connection between input 𝑢𝑢𝑖𝑖 and output 𝑣𝑣𝑗𝑗 . From rows 1 and 2, it is easy to see that the
optimal matching is 𝑢𝑢1 → 𝑣𝑣4 and 𝑢𝑢2 → 𝑣𝑣2. However, in rows 3 and 4 the correct matching
is ambiguous because output neurons have an output close to 1.

 15

Figure 12. Bipartite graph for the minimum cost matching.

Figure 13. Evolution of the neural network outputs for maximum value matching
of small-scale test problem. Note that the assignment of 𝑢𝑢3 and 𝑢𝑢4 is ambiguous

since no output neuron shows an activation close to the value 1.

From the plots it appears that either 𝑢𝑢3 → 𝑣𝑣1 or 𝑢𝑢3 → 𝑣𝑣3 and that either 𝑢𝑢4 → 𝑣𝑣1 or 𝑢𝑢4 →
𝑣𝑣3. This is an artifact of solving a ‘discrete’ problem using ‘continuous’ network outputs
and is related to the neural network fixed points. The issue can be resolved by selecting the
winner-take-all solution for each row. This strategy gives 𝑢𝑢3 → 𝑣𝑣3 and 𝑢𝑢4 → 𝑣𝑣1 as the
correct solution. The maximum value for this assignment is −1 × (−41) = 41 . The
negation is because the network is set up to minimize which is a negated maximization
problem. The matching for 𝑢𝑢3 and 𝑢𝑢4 can also be autonomously disambiguated by
applying the network to the ambiguous subproblem (see Figure 14). The corresponding
bipartite graphs are shown in Figure 15. Note that this is again the same solution that would
be arrived at using the conventional solution approach.

 16

Figure 14. Evolution of the neural network outputs (red curves) for re-solving the
ambiguous subproblem of Figure 13. The maximum value assignment of 𝑢𝑢3 →

𝑣𝑣3 and 𝑢𝑢4 → 𝑣𝑣1 has been disambiguated by the neural network.

(a)

(b)

Figure 15. Bipartite graph for the maximum value matching: (a) ambiguous case

corresponding to network outputs of Figure 13; (b) disambiguated matching.

2. Larger Scale Problems
The scalability of the deep network was tested for several additional problems of increasing
dimension using datasets available in the open literature [4]. Problem sizes n=m=100 to
n=m=800 were tested for minimum cost matching. In each case, it was possible to obtain
solutions having cost values in agreement with the expected results from [4] (see Table 1).
Figure 16 shows an example bipartite graph solution for n=m=100. The matching rate as a
function of the network iterations is also shown in the Figure. As can be seen the neural

 17

network correctly assigned 98% of the input-output pairings on the first pass. The 2%
ambiguous cases could be resolved by a second pass through the network as described
previously. Similar results were obtained for the other cases tested. Bipartite graphs for
n=m=400 and n=m=800 are shown in Figure 17 for reference.

Table 1. Minimum matching cost obtained using neural network for large scale
problem data sets.

Problem

Size
Expected
Cost [4]

Neural
Network Cost

100 305 305.0249
200 475 474.9969
300 626 625.9997
400 804 804.0000
500 991 991.0000
600 1176 1176.0000
700 1362 1362.0000
800 1552 1552.0000

(a) (b)

Figure 16. Example solution for larger scale problem n=m=100: (a) bipartite graph

for the minimum cost matching; (b) matching rate as a function of iteration.

 18

(a) (b)

Figure 17. Minimum coast bipartite graphs for n=m=400 (a) and n=m=800 (b).

F. LEARNING ACCELERATION

Learning rates are influenced by the number of non-zero network weights, as these
influence the connectivity of the network layers. To probe into how network weights can
potentially influence learning of the neural network architecture studied here, several
weight pruning templates were applied. Some results of the initial study are shown in
Figure 18. Figure 18 shows the evolution of the neural network outputs for a small-scale
test problem. The magenta-colored curves show the outputs for the baseline configuration.
By applying one pruning template, learning was found to become destabilized as indicated
by the oscillations in the network outputs (red curves). By applying a different pruning
template, the network outputs converged more quickly to the correct output. This is an
example of learning acceleration that can be used to improve the performance of the
approach in an on-line/time-critical instantiation. In general, there exist a variety of
different weight configurations that can be applied to the network. As part of a follow-on
study, systematic investigation of this aspect is highly recommended. One potential
approach is to apply the recent results of Ross [5].

 19

Figure 18. Illustration of the evolution of the neural network outputs for different
layer weight configurations. Legend: magenta curves – baseline configuration;
red curves – weight configuration destabilizes learning; blue curves – weight

configuration for accelerating learning.

G. CONCLUSIONS AND FUTURE WORK

This study explored the question of how machine learning can be applied to identify the
most appropriate ‘sensor’ for completing a ‘task’ by optimizing a task-to-sensor matching
problem. The mathematical concept of a bipartite graph provides a framework for solving
this problem. In this report, a conventional concept for bipartite matching was reviewed.
Using such a conventional approach, computing time can vary greatly with the dimension
and structure of the problem. Using machine learning as an alternative, it is possible to
transform the problem statement into a differential equation which can be implemented
efficiently to support online/real-time decision making. It is demonstrated that bipartite
matching problems can be solved by using a ‘weighted’ residual neural network
architecture. Moreover, the approach is scalable to large dimensional problems.
Accelerating the machine learning process was also studied and it was found that different
constructions of the neural network weight matrix can be used to speed up learning whereas
others might destabilize the learning process. Further investigation into how learning can
be accelerated for online/real-time applications is highly recommended. Future work that
exercises the concept in the context of DoD specific problem data should also be done. One
target area could be drawn from targeting and fires.

 20

H. REEFERNECES

[1] Burkard, R. E., Dell'Amico, M., and Mertello, S. Assignment Problems, Society for
Industrial and Applied Mathematics: Philadelphia, PA, 2012.

[2] Chen, R. T. Q., Rubanova, Y, Bettencourt, J., and Duvenaud, D., “Neural Ordinary
Differential Equations”, arXiv, 2018, doi:10.48550/ARXIV.1806.07366.

[3] Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press: Cambridge,
MA, 2016.

[4] Beasley, J. E., “Linear Programming on Cray Supercomputers”, Journal of the
Operational Research Society, vol. 41, no. 2., pp. 133—139, 1990.

[5] Ross, I. M., “An Optimal Control Theory for Accelerated Optimization,” arXiv, 2019.
Doi: 10.48550/ARXIV.1902.09004.

	A. BACKGROUND
	B. MATHEMATICAL PROBLEM FORMUALTION
	C. CONVENTIONAL SOLUTION APPROACH
	1. Alternating the Bipartite Graph
	2. Updating the Dual Variables and the Hungarian Algorithm

	D. NEURAL NETWORK REPRESETNATION
	E. ILLUSTRATIVE EXAMPLES
	1. Small-Scale Test Problem
	2. Larger Scale Problems

	F. LEARNING ACCELERATION
	G. CONCLUSIONS AND FUTURE WORK
	H. REEFERNECES

