
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports Faculty and Researchers' Publications

2022

Bipartite Graph Learning for Autonomous
Task-to-Sensor Optimization

Karpenko, Mark; Ross, Isaac M.; Proulx, Ronald J.;
Magallanes, Lara C.
Monterey, California: Naval Postgraduate School

https://hdl.handle.net/10945/71883

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



NPS-MAE-22-002 
 
 
 

 
 

NAVAL 
POSTGRADUATE 

SCHOOL 
 
 

MONTEREY, CALIFORNIA 
 
 
 

BIPARTITE GRAPH LEARNING FOR AUTONOMOUS  
TASK-TO-SENSOR OPTIMIZAITON 

by 

Mark Karpenko (MAE) 
Ronald. J. Proulx (SSAG) 

LT Michael Zepeda USN (MAE) 
 

October 2022 

Distribution Statement A:  Approved for public release.  Distribution 
is unlimited. 

 
Prepared for:  Naval Special Warfare Command. This research is supported by funding 
from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). 

NRP Project ID: NPS-22-N192-B



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK



 
i STANDARD FORM 298 (REV. 5/2020) 

Prescribed by ANSI Std. Z39.18 

REPORT DOCUMENTATION PAGE 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 

1. REPORT DATE 
10/14/2022 

2. REPORT TYPE 
Technical Report 

3. DATES COVERED 

START DATE 
10/21/2021 

END DATE 
10/22/2022 

4. TITLE AND SUBTITLE 
BIPARTITE GRAPH LEARNING FOR AUTONOMOUS TASK-TO-SENSOR OPTIMIZAITON 

5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 

 0605853N/2098 

5d. PROJECT NUMBER 

 NPS-22-N192-B; W2223 

5e. TASK NUMBER 5f. WORK UNIT NUMBER 

6. AUTHOR(S) 
Mark Karpenko, Ronald J. Proulx, LT Michael Zepeda USN 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Control and Optimization Laboratories 
Department for Mechanical and Aerospace Engineering 
Naval Postgraduate School 
Monterey, CA, 93943 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 
 
NPS-MAE-22-002 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

NRP, Naval Special Warfare Command 

10. SPONSOR/MONITOR'S 
ACRONYM(S) 
NRP; 
NAVSPECWARCOM 

11. SPONSOR/MONITOR'S 
REPORT NUMBER(S) 
NPS-MAE-22-002; 
NPS-22-N192-B 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Distribution statement A: Approved for public release. Distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
This study explores the question of how machine learning can be applied to identify the most appropriate ‘sensor’ for a task by optimizing task-to-sensor matching. 
The concept of a bipartite graph provides a mathematical framework for task-to-sensor mapping by establishing connectivity between various high-level tasks and 
the specific sensors and/or processes that must be invoked to fulfil those tasks and other mission requirements. The connectivity map embedded in the bipartite 
graph can change depending on the availability/unavailability of resources, the presence of constraints (physics, operational, sequencing), and the satisfaction of 
individual tasks. All of these considerations may be encoded in the value matrix of the graph. Changes can also occur according to the valuation, re-assignment 
and re-valuation of the perceived task benefit and how the completion of a specific task (or group of tasks) can contribute to the state of knowledge prompting the 
periodically re-solve the matching. The results of this study show that a deep neural network architecture can be used to solve the bipartite matching problem in an 
autonomous fashion. The scalability of the problem is demonstrated using an 800 by 800 graph. Learning acceleration is also studied and it is recommended that 
this aspect be further explored as part of future investigations. 
15. SUBJECT TERMS 
bipartite graphs, matching problems, assignment problems, machine learning, deep learning, residual networks, large scale problems, accelerated 
learning 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 
UU 

18. NUMBER OF PAGES 
24 a. REPORT 

unclassified 
b. ABSTRACT 
unclassified 

C. THIS PAGE 
unclassified 

19a. NAME OF RESPONSIBLE PERSON 
Mark Karpenko 

19b. PHONE NUMBER (Include area code) 
831-656-3231 



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 1 

 
NAVAL POSTGRADUATE SCHOOL 

Monterey, California 93943-5000 
 
 
Ann E. Rondeau  Scott Gartner 
President  Provost 
 
 
 
The report entitled “Bipartite Graph Learning for Autonomous Task-to-Sensor 
Optimization” was prepared for Naval Special Warfare Command and funded by the Naval 
Postgraduate School, Naval Research Program (PE 0605853N/2098). 
 
 
Distribution Statement A:  Approved for public release.  Distribution is unlimited. 
 
 
 
This report was prepared by: 
 
 
 
 
________________________ ________________________ 
 Mark Karpenko  Ronald J. Proulx 
 Research Professor  Research Professor 
 
 
 
________________________ 
 LT Michael Zepeda, USN 
 MS Student (591) 
 
 
Reviewed by:  Released by: 
 
 
 
________________________ ________________________ 
 Brian Bingham, Chairman  Kevin B. Smith 
 Mechanical and Aerospace  Vice Provost for Research 
 Engineering  
  



 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK   



 3 

ABSTRACT  

This study explores the question of how machine learning can be applied to identify the 
most appropriate ‘sensor’ for a task by optimizing task-to-sensor matching. The concept of 
a bipartite graph provides a mathematical framework for task-to-sensor mapping by 
establishing connectivity between various high-level tasks and the specific sensors and/or 
processes that must be invoked to fulfil those tasks and other mission requirements. The 
connectivity map embedded in the bipartite graph can change depending on the 
availability/unavailability of resources, the presence of constraints (physics, operational, 
sequencing), and the satisfaction of individual tasks. All of these considerations may be 
encoded in the value matrix of the graph. Changes can also occur according to the 
valuation, re-assignment and re-valuation of the perceived task benefit and how the 
completion of a specific task (or group of tasks) can contribute to the state of knowledge 
prompting the periodically re-solve the matching. The results of this study show that a deep 
neural network architecture can be used to solve the bipartite matching problem in an 
autonomous fashion. The scalability of the problem is demonstrated using an 800 by 800 
graph. Learning acceleration is also studied and it is recommended that this aspect be 
further explored as part of future investigations. 
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A. BACKGROUND 
 
A graph G is bipartite if the vertex set V(G) can be partitioned into two sets U and V in 
such a way that no two vertices from the same set are adjacent. The sets U and V are called 
color classes of G and (U, V) is a bipartition of U and V. In fact, the vertices of G can be 
colored with at most two colors, so that no two adjacent vertices have the same color. A 
graph is called m by n bipartite, if |U| = m and |V| = n. Bipartite graphs can also be multi-
layered to represent complex relationships between the vertices. This is one reason why 
machine learning can be beneficial. That is, machine learning can identify relationships in 
a deep bipartite graph that may not be obvious by inspection. Bipartite representations can 
mathematically characterize large data sets and can be extremely advantageous to facilitate 
autonomous decision making. In this study, the development is restricted to single-layer 
bipartite graphs, though the results could be extended to deeper graphs as part of future 
work. In the context of a DoD problem space, the connectivity graph between the state of 
knowledge, high-level tasks and the optimal matching to individual sensors, can be 
periodically re-evaluated to provide appropriate online/real-time information for 
automating decision making and operations. One application area is joint targeting and 
fires. 
 
 
B. MATHEMATICAL PROBLEM FORMUALTION 
 
Decision making for task-to-sensor assignment can be abstracted as a bipartite matching 
problem, which can be written and solved as a constrained minimization program. The n 
by m bipartite matching problem can be specified as: 
 

Minimize � � 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖
𝑚𝑚

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 

(1) 
Subject to  � 𝑥𝑥𝑖𝑖𝑖𝑖  =  1

𝑛𝑛

𝑖𝑖=1
 (𝑗𝑗 =  1, 2, 3, . . . m) 

   � 𝑥𝑥𝑖𝑖𝑖𝑖  = 1  (𝑖𝑖 =  1, 2, 3, . . .𝑛𝑛)
𝑚𝑚

𝑗𝑗=1
 

 𝑥𝑥𝑖𝑖𝑖𝑖  =  �1 
0 
𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                       

 
 
In the specification of the optimization problem, the matrix of binary decision variables 𝑥𝑥𝑖𝑖𝑖𝑖 
represents all possible the task-to-sensor pairings and 𝑐𝑐𝑖𝑖𝑖𝑖 are the entries of the assignment 
cost matrix. The one-to-one mapping of the bipartite graph is enforced by the constraint 
equations that ensure that there can be only a single non-zero entry in each row and each 
column of the matrix x. 
 
 
 
 
 



 6 

C. CONVENTIONAL SOLUTION APPROACH 
 
The optimization problem (1), is typically solved via its ‘dual’ through the introduction of 
dual variables u and v. The dual problem can be seen in (2) below. Duality theory requires 
that the optimal solution satisfies complementary slackness, which is that the dual variables 
satisfy (3). 
 

Maximize � 𝑢𝑢𝑖𝑖
𝑛𝑛

𝑖𝑖=1
+ � 𝑣𝑣𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑖𝑖
 

(2) Subject to 𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑗𝑗 ≤ 𝑐𝑐𝑖𝑖𝑖𝑖      (𝑖𝑖 = 1,2,3, …𝑛𝑛), 
                              (𝑗𝑗 = 1,2,3, … ,𝑚𝑚 

   
 𝑥𝑥𝑖𝑖𝑖𝑖�𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑗𝑗� = 0 (3) 

 
 
The advantage of working with the dual problem is it allows the use a reduced cost matrix 
C̅ which is generated by the row and column reduction of the primal cost matrix C, through 
the use of the dual variables u and v respectively. An example of this is seen through a 
partial solution by row reduction of C by subtracting from each row the minimum value of 
that row and then column reducing C by the least column value of each column in  
Figure 1. The row reduction column vector is u = (4 6 4 3), and the column reduction row 
vector is v = (4 0 1 0).  This row and column reduction is typical preprocessing and a 
common first step in solving the bipartite matching optimization. It is a first attempt at 
determining the dual variables and the primal solution. 
 

 
Figure 1. Transforming an example assignment cost matrix C to reduced cost 

matrix C̅. The transformation is performed through row reduction with  
u = (4 6 4 3), and column reduction through v = (4 0 1 0). The underlined entries 

correspond to the assigned vertices. 
 
 
Using C̅, the partial primal solution to the problem can be attempted by setting the matching 
according to the underlined zeros in the reduced cost matrix. That is, 𝑢𝑢1 → 𝑣𝑣2 and 𝑢𝑢2 →
𝑣𝑣1. Other candidate matchings are obtained from the dual problem for each c̅ij = 0 entry, 
subject to the constraint of only one allowed match per row and column. Graphically this 
is represented in Figure 2.  The set of vertices U corresponds to the set of tasks and the set 
of vertices V corresponds to the set of sensors to be assigned. The edges, E, are valid 
connections (matchings) between the vertices which satisfy the constraint of c̅ij = 0. The 
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arrowed connections denote the chosen assignments determined from C̅, while the other 
connections represent the other possible assignments. The partial primal solution for the 
chosen dual variables is represented by the vector row(j) = (2 1 0 0), where row(j) currently 
indicates that the first row is assigned to the second column, the second row to the first 
column and rows 3 and 4 are currently unassigned.  The definition for ‘row(j)’ is laid out 
in (4).  It may also be useful to look at the partial solution in terms of the columns instead 
of rows and this point of view is denoted by φ(i) in (5). 
 

𝑟𝑟𝑟𝑟𝑟𝑟(𝑗𝑗) =  �𝑖𝑖 0
 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗 is assigned 𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖

  𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎          (𝑗𝑗 =  1, 2, … . .𝑚𝑚) (4) 

  

𝜑𝜑(𝑖𝑖) =  �𝑗𝑗 0
 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗 

  𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎          ( 𝑖𝑖 =  1, 2, … . .𝑛𝑛) (5) 

 
 

 
 

Figure 2. Intermediate bipartite graph G0 = (U, V; E). The vertices U and V are 
encoded in the rows and the columns respectively of C̅. Set E is the set of 

candidate edges (matchings) denoted by the lines between U and V. 
 
 

1. Alternating the Bipartite Graph 
 
In order to iterate the assignments to solve the bipartite matching, a variety of different 
algorithms can be used. The Hungarian Algorithm is one of these that operates by 
alternating the edges of the bipartite graph Gi = (U, V; Ei), to try to find an additional edge 
matching. If the attempt is succesful, then the partial primal solution, row(j), is updated.  If 
the attempt is unsuccessful, then the dual variables are adjusted such that the constraints 
are still met and alternating of edges is attempted to produce a new bipartite graph Gi+1 = 
(U, V; Ei+1).  The process of alternating edges, updating primal, and editing the duals is 
repeated until a complete matching of the bipartite graph is accomplished.  
 
The process of alternating the edges described above is laid out in detail as the algorithm 
Procedure Alternate(k) [1]. A couple of terms need to be defined for the purpose of 
following the logic of this algorithm. SU  and  SV are the scanned vertices U and V 
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repsectivily. LV  is the labeled vertex of V, which means that the vertex has been assigned 
as a possible primal solution. The variables predj  and sink are used in the Hungarian(O4) 
Algorithm which is covered later. 
 

 Procedure Alternate(k) 
Find an alternating tree rooted at an unassigned vertex k ∈ U. 
SU := LV :=SV := Ø; 
fail := false, sink := 0, i := k; 
while (fail = false and sink = 0) do 
 SU := SU ⋃ {i}; 
 for each j ∈ V \LV : cij - ui  - vj = 0 do predj = i; LV := LV  ⋃ {j}; 
 if LV  \ SV = Ø  then fail = true 
 else 
  let j  be any vertex in LV \ SV; 
  SV := SV  ⋃ {j}; 
  if row(j) = 0 then sink := j else i := row(j) 
 endif 
endwhile 
return sink 

 

 
 
Working through Procedure Alternate(k) suggests an edge between U = 3 and V = 2 as 
seen in Figure 3. Now, U = 1  has no valid connection so the alternating of edges has failed. 
Procedure Alternate(k) therefore ends so that the dual variables can be updated. For G0 = 
(U, V; E), Procedure Alternate(k) would have failed even if a different edge had been 
alternated.  
 

 
Figure 3. Alternating connecting edges using Algorithm Alternate(k).  The straight 

arrowed lines signify the assigned edges while the squiggled line shows the 
remapping of the different edges resulting in a vertex with no possible 

connection. 
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2. Updating the Dual Variables and the Hungarian Algorithm 
 
Updating of the dual variables can be done through the definition of a new variable δ as  
in (6), in order to update the dual vairalbes accodirng to (7) and (8). In order for the update 
to provide valid options without violating the constraints, certain conditions must be met. 
The three conditions are [1]: 
 
1) The labeled edges in  Ei

 are still available after updating the dual variables. This is, 
the corresponding entries c̅ij for the [ i, j ] in Ei remain unchanged with a zero value. 

2) A new edge in Ei is added as a result of updating the dual variables. 
3) Updating the dual variables still requires that c̅ij – ui – vj ≥ 0 for all values in C̅. 
 

𝛿𝛿 =  min( 𝑐𝑐𝑖𝑖𝑖𝑖 – 𝑣𝑣𝑖𝑖  −  𝑢𝑢𝑗𝑗) 𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆;  𝑗𝑗 ∈ 𝑉𝑉 \ 𝐿𝐿𝐿𝐿 (6) 
  

𝑢𝑢𝑖𝑖  =  𝑢𝑢𝑖𝑖  +  𝛿𝛿  (𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆) (7) 
  

𝑣𝑣𝑗𝑗 = 𝑣𝑣𝑗𝑗  −  𝛿𝛿 (𝑗𝑗 ∈ 𝐿𝐿𝐿𝐿) (8) 
  

 
An grpahical example of the dual updating can be seen in Figure 4.  Only the circled entries 
are considered for δ giving a value of δ = 1. This results in u = ( 5 6 5 3)  and v = (4 -1 1 
0). With new edge connections being possible (see Figure 4b) one can alternate the edges 
in the new graph Gi shown in Figure 5.  Going back to the Algorithm Alternate(k) with  
k = 3, no longer fails due to a deadend. Algorithm Alternate(k) instead terminates with a 
new edge being added to the labeled vertices LV.  
 

  
(a) (b) 

 
Figure 4. Illustrating the dual variable update: (a) Using C̅ for finding δ and 

updating the dual variables. Arrows indicate that i ∈ SU and j ∈ V \ LV resulting 
in a δ = 1; (b) updated C̅ using the new dual variables u = (5 6 5 3) and  
v = (4 -1 1 0). 
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(a) (b) 

 
Figure 5. Iterating the bipartite graph: (a) possible graph edges after updating the 

dual variables (arrows indicate currently assigned edges); (b) alternating of the 
edges resulting in an additional assigned edge.   

 
 
The succesful augmenting of the edges results both in an update and addition to the primal 
solution row(j). The Hungarian Algorithm(O4) is now used to update the primal solution 
through the use of the sink variable [1]. The updated primal solution is contained in the 
predj variable. The algorithm tracks the magnitude of |U̅| to determine when the algorithm 
terminates. U̅ is defined as the subset of U for which the assigned vertices in the primal 
solution are elements of. Updating the primal solution per the algorithm results in row(j) = 
(3 1 2 0) and so U̅ = (1 2 3), Consequently, the only valid k ∉ U \ U̅ is k = 4. Proceeding 
further with the Algorithm Alternate(k) results in no possible alternating branches as seen 
in Figure 5b having no edge for u4 resulting in SU = (4), LV = SV = Ø. Updating the dual 
variables again gives δ = 1, u = (5 6 5 4), and v reamaining constant at v = (4 -1 1 0). The 
resulting C̅ from the updated duals is seen in Figure 6a. The resulting graph iterate is seen 
in Figure 6b. Alternating the tree with k =4 results again in a dead end with a rearranging 
of the assigned edges as seen in Figure 6c.  
 

 Hungarian(O4) Algorithm 
initialize u, v, row, φ and U̅: 
while |U̅ |< n do 
 let k  be any vertex in U  \ U̅; 
 while k ∉ U̅ do ⋃ {j}; 
  sink := Alternate(k); 
  if sink > 0 then  
   U̅ := U̅ ⋃{k }, j := sink; 
   repeat 
   i := predj , row(j) := i, h :=φ(i), φ(i)  := j, j := h 
   until i = k 
  else 
  δ := min{cij – ui – vj : i ∈SU, j ∈ V \LV}; 
  for each i ∈ SU do ui := ui + δ; 
  for each j ∈ LV do vi := vi - δ;  
endif 
endwhile 
endwhile 
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(a) (b) (c) 

 
Figure 6. Further iteration of the bipartite graph: (a) C̅ after second update of the 

dual variables; (b) possible re-mappings of the graph links with assigned 
connections denoted by arrows; (c) re-organization of the edges via Algorithm 

Alternate(k).  
 
 
Algorithm Alternate(k) is applied again and terminates in failure triggering another update 
of the dual variables. This update results in δ = 1, u = (6 6 6 4), and  v = (3 -2 1 0). The 
reduced cost matrix produced by the newly iterated dual variables is seen in Figure 7a.  
Inspection of the reduced cost matrix shows that it gives a solution to the matching problm 
since the complementary slackness conditions are fufilled. Matrix C̅ has unique null entries 
for each column and row pair.   

 

  
(a) (b) (c) 

 
Figure 7. Further iteration of the bipartite graph: (a) C̅ after third update of the 

dual variables; (b) re-organization of the edges via Algorithm Alternate(k);  
(c) final application of Algorithm Alternate(k) results in termination of the 

matching search – alternate branching does not reduce the cost. 
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Applying the Algorithm Alternate(k) for the final time results in sink = 4, SU = LV = SV 
= (1 2 3 4), predj = (1 4 3 2) – see Figures 7b and 7c.  Updating the primal solution gives 
row(j) = (1 4 3 2) and φ(i) = (1 4 3 2) which corresponds to the assignment matrix x as 
seen in Figure 8a. The optimized assignment cost determed to be 25. This value is obtained 
by adding together the cost associated with each vertex pairing – the circled entires in 
Figure 8b for which xij=1. 
 

 
 

(a) (b) 
 

Figure 8. Final assignment for minimum cost bipartite matching problem: (a) 
assignment matrix; (b) cost matrix C where the sum of circled (assigned) entries 

gives the minimum cost.  
 

 

D. NEURAL NETWORK REPRESETNATION 
 
Machine learning can be used as an alternative to conventional algorithms (such as the ones 
described in the previous section) for which computing time can vary greatly with the 
dimension and structure of the problem. Machine learning can be advantageous over 
conventional algorithms especially in online/real-time applications because it is possible 
to transform the problem statement given in (1) into a differential equation. This 
representation can be executed exceptionally quickly on hardware. As an example, 
consider a residual network (see Figure 9) that implements a generic input-to-output 
mapping by applying a sequence of layer-wise transformations on a hidden state [2]: 
 

𝐡𝐡𝑖𝑖+1 = 𝐡𝐡𝑖𝑖 + 𝑓𝑓(𝐡𝐡𝑖𝑖, 𝜃𝜃𝑖𝑖) (9) 
 
In equation (9), vector 𝐡𝐡𝑖𝑖  is the input of layer 𝑖𝑖  and vector 𝐡𝐡𝑖𝑖+1  is the output. Vector 
function 𝑓𝑓  represents the processing applied via the layer weight parameters, 𝜃𝜃𝑖𝑖 , and 
activation functions. Referring to Figure 9, the presence of the ‘skip’ connection, allows 
some of the information to pass-through across the layers. This resolves issues with 
vanishing gradients in deep networks [3]. 
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Figure 9. Schematic of a typical residual network illustrating the ‘skip’ 
connection. 

 
The conventional residual neural network can be modified slightly by weighting the 
relative contribution of the pass-through connection. The equation for the layer-wise 
transformation can be re-written as  
 

𝐡𝐡𝑖𝑖+1 = (1 − 𝜎𝜎)𝐡𝐡𝑖𝑖 + 𝜎𝜎𝜎𝜎(𝐡𝐡𝑖𝑖,𝜃𝜃𝑖𝑖) (10) 
 
where 𝜎𝜎 is the weight. From a dynamical systems perspective, weighting the connections 
as described helps to stabilize the dissipation of the error function energy, which facilitates 
the learning process. Thus, the specific neural network architecture (weighted residual 
network) studied for solving the bipartite matching problem is shown in Figure 10.  
 

 
 

Figure 10. Schematic of a ‘weighted’ residual network used for solving the 
bipartite matching problem. 

 
 
E. ILLUSTRATIVE EXAMPLES 
 
Several illustrative examples of the application of the deep neural network architecture of 
Figure 10 are presented in this section. First, the problem presented in Section C is solved 
using machine learning to illustrate that the same solution as the conventional approach 
can be recovered using the neural network. Then, the problem size is increased in order to 
explore the scalability of the concepts. 
 

1. Small-Scale Test Problem 

Consider the 4 × 4 matching problem of Section C, where the objective is to obtain the 
maximum value assignment. The value matrix for the problem is repeated below: 
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(11) 

 
To objective of the machine learning problem is to produce (as the network output) the 
optimal bipartite matching. There is one output neuron for each of the 4 × 4 = 16 possible 
pairings. Figure 11 shows the evolution of the neural network outputs for the maximum 
value matching. The interpretation of the curves is as follows: In Figure 11, each row, i, 
and column, j, represents the activation, 𝑥𝑥𝑖𝑖𝑖𝑖, of the connection between input 𝑢𝑢𝑖𝑖 and output  
𝑣𝑣𝑗𝑗 . If 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 then there is a connection from 𝑢𝑢𝑖𝑖 to  𝑣𝑣𝑗𝑗 . On the other hand, if 𝑥𝑥𝑖𝑖𝑖𝑖 = 0 then 
there is no connection between 𝑢𝑢𝑖𝑖  to  𝑣𝑣𝑗𝑗 . From the plots, it is possible to extract the 
minimum cost bipartite matching: 𝑢𝑢1 → 𝑣𝑣1, 𝑢𝑢2 → 𝑣𝑣4, 𝑢𝑢3 → 𝑣𝑣3, and 𝑢𝑢4 → 𝑣𝑣2. This results 
in the bipartite graph shown in Figure 12. This is which is the same solution determined by 
the conventional approach. 
 

 
 

Figure 11. Evolution of the neural network outputs for minimum cost matching of 
small-scale test problem 

 
The neural network architecture was also applied to solve the ‘maximum value’ bipartite 
matching by interpreting the cost matrix as 𝐶𝐶 = −𝑉𝑉 (see equation 11). Figure 13 shows the 
evolution of the network outputs for the maximum value problem. The interpretation of the 
curves is the same as before. Each row, i, and column, j, represents that strength, 𝑥𝑥𝑖𝑖𝑖𝑖, of the 
connection between input 𝑢𝑢𝑖𝑖 and output  𝑣𝑣𝑗𝑗 . From rows 1 and 2, it is easy to see that the 
optimal matching is 𝑢𝑢1 → 𝑣𝑣4 and 𝑢𝑢2 → 𝑣𝑣2. However, in rows 3 and 4 the correct matching 
is ambiguous because output neurons have an output close to 1.  
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Figure 12. Bipartite graph for the minimum cost matching. 
 
 

 
 

Figure 13. Evolution of the neural network outputs for maximum value matching 
of small-scale test problem. Note that the assignment of 𝑢𝑢3 and 𝑢𝑢4 is ambiguous 

since no output neuron shows an activation close to the value 1. 
 
From the plots it appears that either 𝑢𝑢3 → 𝑣𝑣1 or 𝑢𝑢3 → 𝑣𝑣3 and that either 𝑢𝑢4 → 𝑣𝑣1 or 𝑢𝑢4 →
𝑣𝑣3. This is an artifact of solving a ‘discrete’ problem using ‘continuous’ network outputs 
and is related to the neural network fixed points. The issue can be resolved by selecting the 
winner-take-all solution for each row. This strategy gives 𝑢𝑢3 → 𝑣𝑣3  and 𝑢𝑢4 → 𝑣𝑣1  as the 
correct solution. The maximum value for this assignment is −1 × (−41) = 41 . The 
negation is because the network is set up to minimize which is a negated maximization 
problem. The matching for 𝑢𝑢3  and 𝑢𝑢4  can also be autonomously disambiguated by 
applying the network to the ambiguous subproblem (see Figure 14). The corresponding 
bipartite graphs are shown in Figure 15. Note that this is again the same solution that would 
be arrived at using the conventional solution approach. 
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Figure 14. Evolution of the neural network outputs (red curves) for re-solving the 
ambiguous subproblem of Figure 13. The maximum value assignment of 𝑢𝑢3 →

𝑣𝑣3 and 𝑢𝑢4 → 𝑣𝑣1 has been disambiguated by the neural network. 
 
 

 
(a) 

 

 
(b) 

 
Figure 15. Bipartite graph for the maximum value matching: (a) ambiguous case 

corresponding to network outputs of Figure 13; (b) disambiguated matching. 
 
 

2. Larger Scale Problems 
The scalability of the deep network was tested for several additional problems of increasing 
dimension using datasets available in the open literature [4]. Problem sizes n=m=100 to 
n=m=800 were tested for minimum cost matching. In each case, it was possible to obtain 
solutions having cost values in agreement with the expected results from [4] (see Table 1). 
Figure 16 shows an example bipartite graph solution for n=m=100. The matching rate as a 
function of the network iterations is also shown in the Figure. As can be seen the neural 
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network correctly assigned 98% of the input-output pairings on the first pass. The 2% 
ambiguous cases could be resolved by a second pass through the network as described 
previously. Similar results were obtained for the other cases tested. Bipartite graphs for 
n=m=400 and n=m=800 are shown in Figure 17 for reference. 
 
 

Table 1. Minimum matching cost obtained using neural network for large scale 
problem data sets. 

 
Problem 

Size 
Expected 
Cost [4] 

Neural 
Network Cost 

100 305 305.0249 
200 475 474.9969 
300 626 625.9997 
400 804 804.0000 
500 991 991.0000 
600 1176 1176.0000 
700 1362 1362.0000 
800 1552 1552.0000 

 
 

 
 

 

 
(a) (b) 

 
Figure 16. Example solution for larger scale problem n=m=100: (a) bipartite graph 

for the minimum cost matching; (b) matching rate as a function of iteration. 
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(a) (b) 
 

Figure 17. Minimum coast bipartite graphs for n=m=400 (a) and n=m=800 (b). 
 
 
F. LEARNING ACCELERATION 
 
Learning rates are influenced by the number of non-zero network weights, as these 
influence the connectivity of the network layers. To probe into how network weights can 
potentially influence learning of the neural network architecture studied here, several 
weight pruning templates were applied. Some results of the initial study are shown in 
Figure 18. Figure 18 shows the evolution of the neural network outputs for a small-scale 
test problem. The magenta-colored curves show the outputs for the baseline configuration. 
By applying one pruning template, learning was found to become destabilized as indicated 
by the oscillations in the network outputs (red curves). By applying a different pruning 
template, the network outputs converged more quickly to the correct output. This is an 
example of learning acceleration that can be used to improve the performance of the 
approach in an on-line/time-critical instantiation. In general, there exist a variety of 
different weight configurations that can be applied to the network. As part of a follow-on 
study, systematic investigation of this aspect is highly recommended. One potential 
approach is to apply the recent results of Ross [5]. 
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Figure 18. Illustration of the evolution of the neural network outputs for different 
layer weight configurations. Legend: magenta curves – baseline configuration; 
red curves – weight configuration destabilizes learning; blue curves – weight 

configuration for accelerating learning. 
 
 
 
G. CONCLUSIONS AND FUTURE WORK 
 
This study explored the question of how machine learning can be applied to identify the 
most appropriate ‘sensor’ for completing a ‘task’ by optimizing a task-to-sensor matching 
problem. The mathematical concept of a bipartite graph provides a framework for solving 
this problem. In this report, a conventional concept for bipartite matching was reviewed. 
Using such a conventional approach, computing time can vary greatly with the dimension 
and structure of the problem. Using machine learning as an alternative, it is possible to 
transform the problem statement into a differential equation which can be implemented 
efficiently to support online/real-time decision making. It is demonstrated that bipartite 
matching problems can be solved by using a ‘weighted’ residual neural network 
architecture. Moreover, the approach is scalable to large dimensional problems. 
Accelerating the machine learning process was also studied and it was found that different 
constructions of the neural network weight matrix can be used to speed up learning whereas 
others might destabilize the learning process. Further investigation into how learning can 
be accelerated for online/real-time applications is highly recommended. Future work that 
exercises the concept in the context of DoD specific problem data should also be done. One 
target area could be drawn from targeting and fires. 
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