
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2010

A Pseudospectral Optimal Motion

Planner for Autonomous Unmanned Vehicles

Hurni, Michael A.

http://hdl.handle.net/10945/44964

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36737091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Pseudospectral Optimal Motion Planner for
Autonomous Unmanned Vehicles

Michael A. Hurni, Pooya Sekhavat, Mark Karpenko, and I. Michael Ross

Abstract— This paper presents a pseudospectral (PS) optimal
control algorithm for the autonomous motion planning of a fleet
of unmanned ground vehicles (UGVs). The UGVs must traverse
an obstacle-cluttered environment while maintaining robustness
against possible collisions. The generality of the algorithm
comes from a binary logic that modifies the cost function for
various motion planning modes. Typical scenarios including
path following and multi-vehicle pursuit are demonstrated.
The proposed framework enables the availability of real-time
information to be exploited by real-time reformulation of the
optimal control problem combined with real-time computation.
This allows the each vehicle to accommodate potential changes
in the mission/environment and uncertain conditions. Experi-
mental results are presented to substantiate the utility of the
approach on a typical planning scenario.

I. INTRODUCTION

Various methods have been proposed and examined for
autonomous guidance and control of unmanned vehicle
systems [1], [2]. These methods include road maps, cell
decompositions, artificial potential fields, and optimal control
schemes. A variety of obstacle avoidance algorithms are also
proposed in the literature including bug algorithms, vector
field histograms, the bubble band technique, the curvature
velocity techniques, the Schlegel approach, and the ASL
method. Bug algorithms [3], [4] represent an example of
obstacle avoidance algorithms. They do not provide the
control necessary to traverse the planned trajectory; in most
cases they do not provide an optimal solution and they
often fail in dynamic obstacle avoidance. Bug algorithms do
not account for vehicle dynamics or constraints and operate
based on local information only. Artificial potential field
methods [5], [6] do not provide the control necessary to
traverse the planned trajectory with a measure of optimality.
Vehicle constraints are also not accounted for without the
addition of other techniques. Roadmaps [7], [8] also do not
directly compute the control for the planned trajectory. They
are computationally expensive, and thus are not suitable
for real-time applications. Probabilistic roadmaps can be
implemented in real-time, but sacrifice optimality for the

M. A. Hurni is with the Department of Weapons and Systems En-
gineering, United States Naval Academy, Annapolis, MD, 21402, USA
hurni@usna.edu

P. Sekhavat is with the Department of Aerospace Engineer-
ing, Texas A&M University, College Station, TX, 77843, USA
psekhava@nps.edu

M. Karpenko is with the Department of Mechanical and Astronauti-
cal Engineering, Naval Postgraduate School, Monterey, CA 93943 USA
mkarpenk@nps.edu

I. M. Ross is with the Department of Mechanical and Astronauti-
cal Engineering, Naval Postgraduate School, Monterey, CA 93943 USA
imross@nps.edu

faster run times. Cell decomposition [9], [10] methods are
computationally complex when using a sufficient resolution
to obtain optimality. This makes dynamic obstacle avoidance
difficult, and limits their ability to be updated frequently
enough to be able to be used in real-time and receive and
incorporate local information updates.

Multi-vehicle trajectory planning has been associated with
many descriptive terms and categories such as centralized,
decentralized, decoupled, coordinated, cooperative and/or
prioritized motion. Centralized planning involves utilizing
one state space vector that includes all the vehicle states. De-
centralized (also referred to as decoupled) planning involves
path planning of each vehicle individually, thus reducing
the complexity and size of the state space. Coordinated and
cooperative planning are interchangeable and refer to the
amount of information each vehicle has about every other
vehicle in decoupled motion. Of course, centralized planning
could also be called fully cooperative, since the vehicles are
in one state space and operate synergistically. Prioritization
can be inserted in decoupled planning and refers to the
priority of certain vehicles over others.

Methods based on artificial potential fields have been
extended to decoupled multi-vehicle planning, control and
prioritization [11]–[13]. Roadmap theory has also been used
to tackle multi-vehicle scenarios. In [14], optimal motion
planning is presented for multiple robots by defining a state
space that simultaneously represents the configurations of
all of the robots. The SBL planner [15] has been proven
to be more reliable at centralized planning than decoupled
planning. Approximate cell decomposition has also been
used for multi-vehicle path planning. The complexity of the
problem is reduced by means of a hierarchical multilevel
discretization using a simple navigation function [16].

Trajectory planning using numerical optimal control tech-
niques is a direct approach that solves the complete motion-
planning problem. The method determines the vehicle tra-
jectory to the target by searching within the vehicle’s state
space. The planner requires the kinodynamic equations of
the vehicle, the obstacles formulated in the form of path
constraint functions, and an appropriate cost function. The
cost function can be any function of state variables, control
variables and time, as long as it is sufficiently smooth (i.e.
continuous and differentiable). The kinodynamic equations
can also be viewed as constraints (like the obstacles), defin-
ing the relationship between the vehicle states and the control
inputs. Even though the exact obstacle models may not be
smooth functions, the constraints used to formulate them
within the optimal control framework can be chosen as

2010 American Control Conference
Marriott Waterfront, Baltimore, MD, USA
June 30-July 02, 2010

WeC01.1

978-1-4244-7427-1/10/$26.00 ©2010 AACC 1591

smooth approximate functions. By defining the problem in
optimal control framework, we can find a solution from
initial to final conditions for each vehicle, while avoiding
obstacles and obeying vehicle state/control limits [17].

In this paper, we present a general Pseudospectral optimal
control-based algorithm for autonomous motion planning
and control of unmanned ground vehicles. Pseudospectral
methods [17]–[21] are a family of computational methods
that can be characterized according to the underlying or-
thogonal polynomials (e.g., Legendre polynomials, Cheby-
shev polynomials, etc.) and types of quadrature nodes (e.g.,
Gauss-Lobatto, Gauss-Radau or pure Gauss) [17], [22]. The
basic idea in PS methods is to discretize the continuous-
time optimal control problem into a sequence of discrete-
time optimization problem using PS methods. The resulting
sequence of optimization problems can then be solved by fast
spectral algorithms [17], [23]. As will be apparent shortly,
the motion planning framework requires the use of arbitrary
boundary conditions; hence, we choose Gauss-Lobatto nodes
as other grid points may fail to converge [24].

The main objective of this paper is to illustrate how a
wide variety of single and multi-vehicle trajectory planning
problems with varying levels of available information can
be solved through adjustment of the optimal control problem
formulation. The ability of the proposed framework to exploit
the availability of real-time information to allow control
solutions to be repeatedly recomputed and updated through-
out the mission is described. This enables the trajectory
planning algorithm to accommodate changing and uncertain
environmental conditions. Experimental results are presented
to demonstrate the utility of the approach on a laboratory
scale UGV in a typical planning scenario.

II. PROBLEM STATEMENT
A. Optimal Control Formulation

The objective of the trajectory planning problem is to find
the state-control function pair, t 7→ (x, u) ∈ RNx × RNu

that enables the vehicle to maneuver from initial state, xo,
at time to to target state, xf , at final time, tf . Feasible state-
control function pairs are those that satisfy the boundary
conditions, the limits on the vehicle states and controls,
and the proximity constraints for collision avoidance. The
optimal state-control function pair is the feasible trajectory
that minimizes the mission specific cost function, J [·]. The
general formulation of the optimal control problem for au-
tonomous trajectory planning of unmanned vehicles is given
by [25]:

Minimize J [·] = E(xo, xf , to, tf)+∫ tf

to

F (x(t), u(t), t) dt

Subject to ẋ(t) = f(x(t), u(t), t)
xL ≤ x(t) ≤ xU
uL ≤ u(t) ≤ uU
hL ≤ h(x(t), u(t), t) ≤ hU
eL ≤ e(xo, xf , to, tf) ≤ eU

(1)

In (1), ẋ(t) = f(x, u, t) represents the vehicle dy-
namics, subject to state and control constraints. The path
constraints, h(x, u, t), ensure collision-free trajectories and
e(xo, xf , to, tf) enforce the desired initial and final condi-
tions. Using the above framework, multi-vehicle missions
can be handled in either a centralized or decentralized
fashion. For centralized planning, the vehicle dynamic and
constraint equations are expanded to include all vehicles. In
the decentralized approach, an optimal control problem is
solved for each vehicle, taking into account the available
information about the others. In the following sections we
illustrate how a wide variety of single and multi-vehicle
trajectory planning scenarios can be solved using the above
formulation.

B. Vehicle Model

A schematic of the UGV for mathematical modeling is
shown in Fig. 1. The UGV has a front wheel steering
arrangement, which introduces nonholonomic constraints to
the system. The state equations describing the motion of the
UGV are as follows:

ẋ =
d

dt

x
y
θ
v
γ

 =

v cos(θ)
v sin(θ)
v

L
tan(γ)

a
ω

 (2)

where variables, x, y, and θ give the position and orientation
of the vehicle, measured with respect to the center of the
rear axle. The vehicle speed is given by v, L is the vehicle
wheelbase and γ is the steering angle. The control variables
are u = [a, ω]T , where a is the vehicle acceleration and ω
is the steering rate.

center of
rotation

Fig. 1. Schematic of nonholonomic autonomous vehicle.

C. Obstacle Model

Obstacles are modeled using continuous algebraic func-
tions of the form

d =
(
x− xc
a+ vs

)p
+
(
y − yc
b+ vs

)p
− 1 (3)

1592

where xc and yc indicate the location of the geometric center
of the obstacle, and d is the distance between a point (x, y)
and the boundary of the obstacle. By varying the value of
parameter, p, equation (3) can be used to create a number of
generic shapes that represent different types of obstacles. The
values of a and b are chosen to define the obstacle dimensions
and vs represents the radius of a circle circumscribing the
vehicle. Equation (3) can be used directly to check for
collisions between the vehicle location, (x, y), and obstacles
in the environment. Potential collisions between two vehicles
are modeled by setting a = b = vs and p = 2.

An issue that must be considered when using (3) within
a computational optimal control framework is the fact that
the equations describing the problem formulation should be
well-scaled for numerical solution. Since the value of d in (3)
can become large when the vehicle is far from the obstacle,
the natural logarithm of (3) is used to formulate the path
constraints:

hij = ln
[(

xj(t)− xci
(t)

ai(t) + vsj

)pi

+
(
yj(t)− yci(t)
bi(t) + vsj

)pi
]

(4)

In (4), i = 1, . . . ,m + n and j = 1, . . . , n are indices
denoting the possible collisions between the m obstacles and
n vehicles in the environment. By allowing the values of
variables, xci , yci , ai, and bi in the right hand side of (4) to
be time dependent, it is possible to model moving obstacles,
constraints imposed by the motion of other vehicles, as well
as obstacles with time-varying dimensions.

D. Pseudospectral Method

A pseudospectral (PS) method solves optimal control
problems by approximating the vehicle state trajectories by
N -th order Lagrange interpolating polynomials. The inter-
polating polynomials are evaluated at the Legendre-Gauss-
Lobatto (LGL) nodes, τ ∈ [−1, 1]. The non-uniformily
distributed nodes are dense near the end points, which
effectively inhibits the Runge phenomena, and is a necessary
condition for convergence of the discretized solution to the
continuous-time solution. It is worth noting that pure Gauss
points, although dense near the end points, do not converge
to the continuous-time problem [22], [24]; hence, we use
Gauss-Lobatto points.

In the PS discretization, the time history of the approxi-
mate state trajectory is given by

x(t) ≈ xN (t) =
N∑
l=0

xlφl(τ) (5)

where xl is the value of the approximant at node tl and
φl(τ) are the Lagrange interpolating polynomials of order N .
The time-derivatives of the state trajectories are obtained
straightforwardly from the following equation

ẋ(t) ≈ ẋN (tk) =
N∑
l=0

Dklxl (6)

where D is a N + 1 × N + 1 differentiation matrix with
constant elements:

Dkl =
2

tf − t0

LN (τk)
LN (τl)

1
τk−τl

if k 6= l;

−N(N+1)
4 if k = l = 0;

N(N+1)
4 if k = l = N ;

0 otherwise

(7)

In (7), LN is the N -th order Legendre polynomial. The
discretized controls satisfying the vehicle dynamics can be
computed by ensuring that

∑N
l=0 Dklxl − f(xk, uk, t) = 0

for k = 0, 1, . . . , N .
The cost function is evaluated by applying the Gauss-

Lobatto integration rule

J [·] = E(x0, xN , to, tf) +
tf − to

2

N∑
k=0

wkF (xk, uk) (8)

where wk are the LGL weights given by

wk =
2

N(N + 1)[LN (τk)]2
, k = 0, 1, . . . , N (9)

Using the above relations, the PS method transforms the
continuous-time optimal control problem to sequence of
discrete-time problems, which can be solved by fast spectral
algorithms. Additional details on the PS method and the
spectral algorithm can be found in [21]–[23].

III. THE PSEUDOSPECTRAL TRAJECTORY PLANNING
ALGORITHM

A block diagram of the trajectory planning algorithm is
given in Fig. 2. The figure illustrates how the initial open-
loop optimal control problem is formulated, and how updates
can be incorporated via feedback in order to enable the vehi-
cles to operate autonomously in real-time. The formulation
of the optimal control problem is first initialized based on
the mission requirements and known information about the
environment map. The Initialize Problem Formulation block
also configures the general cost function:

J [·] = kT tf+
∫ tf

to

[kRR(t) + kPP(t) + kSS(t) + kGG(t)] dt
(10)

By changing the state of the logic switches, k, it is possible
to configure the cost function for different kinds of trajectory
planning missions. For example, if it is desired to minimize
the maneuver time, then kT = 1. If maneuver time is
not important then kT is set to zero. By initializing the
remaining switches, path following, formation keeping or
sector keeping modes can be selected. It is also possible to
choose whether to treat multi-vehicle systems in a centralized
or decentralized manner.

Unlike centralized planning, a decentralized planning sce-
nario relies heavily on the type of information that is
available for processing by each of the vehicles as they
execute the planning algorithm. Three levels of information
about the static/dynamic environment have been studied
within the context of the proposed PS trajectory planning
algorithm: instantaneous (snapshots), prediction (course and

1593

TABLE I
SUMMARY OF COST FUNCTION LOGIC.

Motion Planning Mode kR kG kP kS kT

Centralized Multi-Vehicle 1 1 0 0 1
Decentralized Multi-Vehicle 1 0 0 0 1
Path Following 0 0 1 0 1
Formation Keeping 1 0 1 0 0
Sector Keeping 1 0 0 1 0

speed), and complete a priori knowledge of the environment
dynamics [26].

If only instantaneous information about the surroundings
and other vehicles is available, the planner assumes a static
environment while computing each vehicle trajectory update.
However, since the trajectory is continuously recomputed
as the vehicle executes the motion, it is still possible to
successfully navigate amongst other vehicles and moving
obstacles without collision. A vehicle with prediction ca-
pability uses estimates of moving obstacle and/or other
vehicles’ course and speed to extrapolate their positions
over the trajectory planning horizon. A vehicle with a priori
knowledge of the environment has the complete knowledge
of future changes in the course and speed of all other vehicles
as well as all static/dynamic obstacles. Each of these three
information levels can be exploited by the motion planner for
multi-vehicle missions. A summary of the possible motion
planning modes that can be configured by setting the cost
function switches is given in Table I.

Initialize Problem
Formulation

Solve PS Optimal
Control Problem

Mission & Map
Information

Update Problem
Formulation

Update Problem
Formulation

Feasibility &
Collision Checks

Real-Time Map &
Mission Updates

Stop
Vehicle

Execute
Trajectory

CONTROL COMPUTATION LOOP

replan

Fig. 2. Block diagram of trajectory planning algorithm.

Next, we explain the various elements comprising the
running cost that enable the different trajectory planning
modes to be realized. The first element of the running cost,
R(t), ensures robustness of the vehicle collision avoidance
against model uncertainty and control interpolation errors
that could otherwise cause the vehicle to collide with an
obstacle, or another vehicle. The robustness cost is defined

as

R(t) =
n∑
j=1

n+m∑
i=1

wrij
(ee

−hij − 1) (11)

where wrij are weights that are incremented to increase the
maneuver robustness when the trajectory of a vehicle passes
in close proximity to an obstacle or another vehicle. The
precise manner in which the weights are chosen depends
upon the type of trajectory planning problem being solved
and is explained later in this section. The value of pi used
to compute hij (see equation 4) is limited to be less than
4 in order to ensure that the value of R(t) is large enough
to enable the vehicle to navigate around obstacle corners
without collision. Fig. 3 shows how adding the robustness
cost influences the vehicle motion when navigating around
an obstacle.

0 5 10 15 20 25 30
0

5

10

15

20

x−position (m)

y−
po

si
tio

n
(m

)

goal

with robustness
no robustness

start
obstacle

Fig. 3. The influence of robustness cost on obstacle avoidance (wr = 1/7).

The next component in running cost, P(t), is used for path
following and leader-follower formation keeping in multi-
vehicle teams. Here, each vehicle must track a predefined
path without colliding with other vehicles or other obstacles.
Path following is accomplished by introducing the running
cost:

P(t) =
n∑
j=1

tan−1
[
(xj(t)− xdj (t))2 + (yj(t)− ydj (t))2

]
(12)

The use of the transcendental function ensures that the
cost of deviating from the specified path increases smoothly
as the path following error increases. The interplay between
the robustness cost, R(t), and the path following cost, P(t),
allows the vehicles to successfully avoid obstacles while
tracking predefined trajectories as closely as possible. This is
achieved by monitoring the value of the robustness function
and toggling between the robustness and path following
costs. For example, if R(t) exceeds a threshold (e.g. in the
event of an unforeseen pop-up obstacle along the prescribed
path), the algorithm can automatically switch from path
following mode to obstacle avoidance mode by setting kP
to zero and kR to one for robust collision avoidance. A
path-following trajectory for a single vehicle is shown in
Fig. 4. Without P(t) active in the cost function, the vehicle
traverses the path denoted by the dashed line. However,

1594

including P(t) as part of the cost cost will drive the vehicle
along the predefined path until the vehicle encounters the
unanticipated obstacle in its path. As the vehicle approaches
the obstacle the value of R(t) continues to increase until
the motion planner switches to obstacle avoidance mode
(kR = 1, kP = 0). After successfully avoiding the obstacle,
the value of R(t) decreases below the switching threshold
and the path planning cost is reactivated (kR = 0, kP = 1)
for the remainder of the maneuver.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

x−position (m)

y−
po

si
tio

n
(m

)

goal

obstaclestart
desired path

with
without

Fig. 4. Path-following with obstacle avoidance illustrating the effect of
toggling between R(t) and P(t).

The objective of sector keeping is to maintain the position
of one or more vehicles within a predefined region relative
to a reference point. A typical sector keeping example is a
pursuit maneuver where each pursuing vehicle should track
a moving target while maintaining a certain buffer distance
from the target. In the proposed framework, this type of
sector keeping mission is achieved by invoking the cost
function, S(t):

S(t) =
n∑
j=1

sj(t)

sj(t) =

− ln

[(
xj − xt
dmin

)2

+
(
yj − yt
dmin

)2
]

; d ≤ dmin

0 ; dmin < d < dmax

ln

[(
xj − xt)
dmax

)2

+
(
yj − yt
dmax

)2
]

; d ≥ dmax

(13)
In (13), xt and yt denote the location of the moving

target and the values of dmin and dmax, which define the
desired sector, are dictated by the mission requirements.
Fig. 5 shows an example of using the cost function (13)
in a pursuit scenario. The target vehicle travels along the
random path (red line) amongst eight obstacles, while three
pursuit vehicles maintain their position within the desired
sector (dotted rings) throughout the maneuver.

The final component making up the running cost is the
distance-to-goal function, G(t). This component of the cost
is used exclusively for centralized multi-vehicle motion plan-
ning. The objective here is to ensure that vehicles that are
able to move to their final positions more quickly than others

0 5 10 15 20 25
0

5

10

15

20

25

x−position (m)

y−
po

si
tio

n
(m

)

end

start

path of
target

obstacle

target vehicle
pursuit sector

pursuit vehicle

Fig. 5. An example multi-vehicle pursuit scenario.

do not ‘wander’ while waiting for slower vehicles to reach
their goals (see Fig. 6a). The cost G(t) is simply a function
of each vehicles current distance from the desired goal:

G(t) =
n∑
j=1

ln

(xj(t)− xdj (t)
ε

)2

+

(
yj(t)− ydj (t)

ε

)2

(14)
where ε is a user-defined small parameter. The distance-to-
goal cost adds to the overall cost when a vehicle has not
reached its goal position. Therefore, the cost is minimized
when all vehicles reach their goals in minimum time. The
same multi-vehicle maneuver shown in Fig. 6a is repeated
in Fig. 6b with G(t) added to the cost function. In Fig. 6a
each vehicle took 32-sec to complete its maneuver. With the
addition of running cost, G(t), in Fig. 6b, the individual
maneuver times varied from 22 sec (fastest vehicle) to 32
sec (slowest vehicle) [26].

Once the motion planning problem is formulated accord-
ing to (1) and initialized by invoking the appropriate elements
of the cost function, it is repeatedly solved using PS tools.
This occurs in the Solve Problem block of Fig. 2. The
number of LGL nodes used to discretize the problem at
each iteration is determined based on the overall distance
the vehicle must travel, as well as the scale of the obstacles
in the environment. In this paper, the PS-based software
package DIDO [27] is used to rapidly generate the extremals.
The advantage of using PS optimal control algorithms lies
in the fact that solutions can be obtained in a robust and
rapid fashion. Typical computation rates for the motion
planning problems shown in Figs. 3 to 6 range between
0.5 and 2 Hz. Therefore, by including a mechanism that
allows the problem formulation to be continually updated,
the benefits of feedback can be exploited to adapt to changes
in environmental conditions such as dynamic and pop-up
obstacles.

After solving the optimal control problem, the solution
trajectory is validated in the Feasibility and Collision Checks
block of Fig. 2. The first check is a feasibility check to
ensure that the numerically computed control profile for each
vehicle generates the desired optimal state trajectory (DIDO
output), within a tolerance, when interpolated and propagated

1595

0 5 10 15 20 25 30
0

2

4

6

8

10

x−position (m)

y−
po

si
tio

n
(m

)

 goal

start

obstacle

(a)

0 5 10 15 20 25 30
0

2

4

6

8

10

x−position (m)

y−
po

si
tio

n
(m

)

 goal

start

obstacle

(b)

Fig. 6. Centralized multi-vehicle planning: (a) without distance-to-goal
cost; (b) with distance-to-goal cost.

through the vehicle kinematics. If the feasibility check fails,
the solution to the PS discretized problem has not converged
to the solution of the corresponding continuos problem. In
this case, the problem is reformulated by increasing the
number of LGL discretization nodes and then resolved. The
number of additional nodes required is generally small owing
to the rapid convergence properties of the PS discretiza-
tion [28].

The second set of verification checks are proximity checks.
These checks are carried out by first constructing a proximity
matrix, Hj , for each vehicle (j = 1, . . . , n). The elements of
each matrix, hjk, are the distances, computed using (3), be-
tween the vehicle and other obstacles/vehicles, at each point
on a refined mesh. Therefore, each proximity matrix has
dimensions (n+m)×Nr, where Nr is the number of points
on the refined mesh. Two types of proximity checks are
performed, (i) collisions with a single object, and (ii) simul-
taneous collisions with multiple objects. The former check
establishes the degree to which the vehicles can maneuver
without colliding with objects distributed in the environment.
The latter check is used to determine whether the solution
needs to be refined to reduce the potential of collision when
maneuvering amongst closely spaced obstacles. The result
of each proximity check determines which Update Problem
Formulation block will be followed in Fig. 2. A replan is
required when any element of the proximity matrix indicates

a direct collision between a vehicle and an obstacle. The
distance between the vehicle and other vehicles/obstacles at
any time instant on each vehicle’s trajectory is also calculated
to check if the vehicle fails to navigate any narrow passage.
In either case, a new bias is selected to reinitialize the
optimization solver and the problem is resolved.

A second set of proximity checks is performed next in
order to avoid collisions arising from model uncertainty
and control interpolation errors. However, in these checks,
the proximity is evaluated only over a finite time horizon
determined based on the mission. Thus, the algorithm can
react to proximity events only when the vehicle is operating
near obstacles.

If the vehicle is operating near a single obstacle, the
robustness cost is modified by incrementing the weight, wrij

,
according to the following relation

wrij = wrij +K(1− epi/8) (15)

where j = 1, . . . ,m + n and j = 1, . . . , n and K is
selected based on how aggressive the vehicle trajectory
should be refined by the robustness cost, R(t). If the vehicle
is navigating near an obstacle or through a passage between
two closely-spaced obstacles, model uncertainty and control
interpolation errors are addressed simply by increasing the
number of nodes, N , used in the PS discretization.

IV. EXPERIMENTAL IMPLEMENTATION

To demonstrate the practical utility of the algorithm, a
trajectory planning test was conducted on a laboratory scale
unmanned vehicle testbed. The experimental test environ-
ment and the autonomous UGV are shown in Fig. 7. The
UGV platform (see Fig. 7a) has a 4-wheel drive chassis
with a front wheel steering arrangement. Thus, the vehicle
kinematics can be modeled directly using equation (2). The
vehicle is retrofitted with Parallax HB-25 motor controllers
driven by a Robostix micro-controller board. An XBee-PRO
wireless RF module is used to facilitate communications
between the vehicle and a ground-based command and
control center. The Robostix board is also used to interface
a number of infrared proximity sensors that can be used to
detect collisions between the vehicle and obstacles in the
environment. The position of the vehicle is measured using
an optical motion capture (MoCap) measurement system.
The MoCap system (see Fig. 7b) determines the three-
dimensional positions of retroreflective markers affixed to
the vehicle from a series of two-dimensional images acquired
from CCD cameras distributed throughout the experimental
test cell. The MoCap system provides position data at a rate
of 120 Hz with sub-millimeter accuracy making it ideal for
recording the motion of the experimental UGV.

The results of the experimental test are shown in Fig. 8.
The objective was to compute and execute a minimum time
maneuver between the start and goal positions shown, while
avoiding collisions with several obstacles present in the
workspace. In this scenario, it is assumed that a map of the
environment is known a priori and that the obstacles remain
stationary throughout the maneuver. Therefore, the proposed

1596

trajectory planning algorithm could be implemented in open-
loop mode and problem updates are not incorporated in
the maneuver. Constraints on the acceleration, maximum
velocity and steering angle of the experimental vehicle were
included in the problem formulation to ensure that the
numerical solution is physically realizable.

The resulting collision-free maneuver was implemented
by streaming the computed vehicle speed and steering angle
commands from the ground terminal to the UGV over
the XBee network. The overall maneuver time was about
12.5 seconds and the UGV reached speeds of nearly 1
m/sec during the test. Referring to Fig. 8, it is observed
that the experimentally executed trajectory closely follows
the computed optimal trajectory. The slight discrepancies
between the two paths can be attributed to the error intro-
duced due to imperfect tracking of the vehicle commands.
Nonetheless, the experimental results confirm the feasibility
of the numerical solution and demonstrate the functionality
of the trajectory planning algorithm on a real vehicle.

A more comprehensive suite of experiments is currently
being conducted to further illustrate the efficacy of the
developed motion planning algorithm for other types of
motion planning problems.

(a)

(b)

Fig. 7. Experimental setup: (a) autonomous unmanned ground vehicle; (b)
indoor test environment showing optical motion capture system.

V. CONCLUSIONS

It is possible to solve a large variety of motion planning
problems using a single optimal control framework. The

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

y−
po

si
tio

n
(m

)

goal

experiment
simulation

obstacle

start

x−position (m)

Fig. 8. Experimental obstacle avoidance maneuver.

key to this generality is the unification of different optimal
control problem formulations solved in real-time using real-
time information updates. The real-time computation is made
possible through the use of convergent PS optimal control
techniques. The Legendre PS method was chosen as it is
the only proven PS method for convergence and consistency.
The utility of the approach was demonstrated by way of a
typical trajectory planning experiment in which a UGV must
navigate amongst several stationary obstacles.

REFERENCES

[1] Siegwart, R. and Nourbakhsh, I.R., “Introduction to Autonomous
Mobile Robots,” The MIT Press, 2004.

[2] Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W.,
Kavraki, L.E., and Thrun, S., “Principles of Robot Motion; Theory,
Algorithms, and Implementation,” The MIT Press, 2005.

[3] Langar, R.A., Coelho, L.S., and Oliveira, G.H., “K-Bug, A New Bug
Approach for Mobile Robot’s Path Planning,” IEEE International
Conference on Control Applications, 2007.

[4] Magid, E. and Rivlin, E., “CautiousBug: A Competitive Algorithm for
Sensory-Based Robot Navigation,” Proceedings of the 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2004.

[5] Vadakkepat, P., Tan, K.C., and Ming-Liang, W., “Evolutionary Ar-
tificial Potential Fields and Their Application in Real Time Robot
Path Planning,” Proceedings of the 2000 Congress on Evolutionary
Computation, Vol. 1, pp. 256-263, 2000.

[6] Urakubo, T., Okuma, K., and Tado, Y., “Feedback Control of a Two
Wheeled Mobile Robot with Obstacle Avoidance Using Potential
Functions,” Proceedings of the 2004 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2004.

[7] Li, T.Y. and Shie, Y.C., “An Incremental Learning Approach to Motion
Planning with Roadmap Management,” IEEE International conference
on Robotics and Automation, 2002.

[8] Song, G., Miller, S., and Amato, N.M., “Customizing PRM Roadmaps
at Query Time,” International Conference on Robotics and Automa-
tion, 2001.

[9] Cowlagi, R.V. and Tsiotras, P., “Beyond Quadtrees: Cell Decompo-
sitions for Path Planning Using Wavelet Transforms,” Proceedings of
the 46th IEEE Conference on Decision and Control, 2007.

[10] Zhu, D. and Latombe, J.C., “New Heurisic Algorithms for Efficient
Hierarchical Path Planning,” IEEE Transactions on Robotics and
Automation, Vol. 7, No. 1, 1991.

[11] Warren, C.W., “Multiple Robot Path Coordination Using Artificial Po-
tential Fields,” Proceedings of the 1990 IEEE International Conference
on Robotics and Automation, vol. 1, pp. 500-505, 1990.

[12] Baras, J.S., Tan, X., and Hovareshti, P.,“Decentralized Control of
Autonomous Vehicles,” Proceedings of the 42nd IEEE Conference on
Decision and Control, 2003.

[13] Zheng, T., and Zhao, X.,“A Novel Approach for Multiple Mobile
Robot Path Planning in Dynamic Unknown Environment,” IEEE
Conference on Robotics, Automation and Mechatronics, 2006.

1597

[14] Lavalle, S.M. and Hutchinson, S.A.,“Optimal Motion Planning for
Multiple Robots Having Independent Goals,” IEEE Transactions on
Robotics and Automation, vol. 14, No. 6, 1998.

[15] Sanchez, G. and Latombe, J.C.,“Using a PRM Planner to Compare
Centralized and Decoupled Planning for Multi-Robot Systems,” Pro-
ceedings of IEEE International conference on Robotics & Automation,
2002.

[16] Conte, G. and Zulli, R. “Hierarchical Path Planning in a Multi-Robot
Environment with a Simple Navigation Function,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 25, No. 4, 1995.

[17] Ross, I.M. and Fahroo, F., “Issues in the Real-Time Computation of
Optimal Control,” Mathematical and Computer Modelling, Volume 43,
Issues 9-10, pp. 1172-1188, 2006.

[18] Bollino, K.P., Lewis, L.R., Sekhavat, P., and Ross,
I.M.,“Pseudospectral Optimal Control: A Clear Road for Autonomous
Intelligent Path Planning,” AIAA Infotech at Aerospace 2007
Conference and Exhibit, 2007.

[19] Gong, Q., Kang, W., Bedrossian, N., Fahroo, F., Sekhavat, P., and
Bollino, K.P., “Pseudospectral Optimal Control for Military and In-
dustrial Applications,” Proceedings of the 46th IEEE Conference on
Decision and Control, pp. 41284142, 2007.

[20] Ross, I.M., Sekhavat, P., Gong, Q., and Fleming, A., “Optimal Feed-
back Control: Foundations, Examples, and Experimental Results for
a New Approach,” Journal of Guidance, Control, and Dynamics, 31
(2), 2008.

[21] Ross, I.M. and Fahroo, F., New Trends in Nonlinear Dynamics and

Control and their Applications, ser. Lecture Notes in Control and
Information Sciences. vol. 295, ch. “Legendre Pseudospectral Approx-
imations of Optimal Control Problems”, pp. 327–342, Springer-Verlag,
2003.

[22] Fahroo, F. and Ross, I. M.,“Advances in Pseudospectral Methods for
Optimal Control,” AIAA Guidance, Navigation, and Control Confer-
ence, AIAA Paper 2008-7309, 2008.

[23] Gong, Q. , Fahroo, F., and Ross, I. M.,“A Spectral Algorithm for
Pseudospectral Methods in Optimal Control,” Journal of Guidance,
Control and Dynamics, Vol. 31, No. 3, pp. 460-471, 2008.

[24] Fahroo, F. and Ross, I. M.,“Convergence of the Costates Does Not
Imply Convergence of the Control,” Journal of Guidance, Control and
Dynamics, Vol. 31, No. 5, pp. 1492-1497, 2008.

[25] Ross, I.M., “A Primer on Pontryagin’s Principle in Optimal Control”,
Collegiate Publishers, San Francisco, CA, November 2009.

[26] Hurni, M.A. “An information-centric approach to autonomous trajec-
tory planning utilizing optimal control techniques,” Doctoral Disser-
tation, Naval Postgraduate School, Monterey, CA, September 2009.

[27] Ross, I.M., “A Beginner’s Guide to DIDO: A MATLAB Application
Package for Solving Optimal Control Problems”, Elissar Technical
Report TR-711, http://www.elissarllc.com, 2007.

[28] Gong, Q. , Kang, W. and Ross, I. M., “A Pseudospectral Method for
the Optimal Control of Constrained Feedback Linearizable Systems”,
IEEE Transactions on Automatic Control, 51 (7), pp. 1115-1129, 2006.

1598

