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Abstract

Historically, solving optimal control problems with high index differential
algebraic equations (DAEs) has been considered extremely hard. Computa-
tional experience with Runge-Kutta (RK) methods confirms the difficulties.
High index DAE problems occur quite naturally in many practical engineering
applications. Over the last two decades, a vast number of real-world prob-
lems have been solved routinely using pseudospectral (PS) optimal control
techniques. In view of this, we solve a “provably hard,” index-three problem
using the PS method implemented in DIDO c©, a state-of-the-art MATLABr

optimal control toolbox. In contrast to RK-type solution techniques, no la-
borious index-reduction process was used to generate the PS solution. The
PS solution is independently verified and validated using standard industry
practices. It turns out that proper PS methods can indeed be used to “di-
rectly” solve high index DAE optimal control problems. In view of this, it is
proposed that a new theory of difficulty for DAEs be put forth.
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1 Introduction

Systems of high dimensional nonlinear differential algebraic equations (DAEs) nat-
urally arise when modeling physical processes in fields of mechanical, aerospace and
electrical engineering.10,12,25 Obtaining numerical solutions to high index DAE
optimal control problems is widely considered to be difficult.5,9, 11,13,14 The com-
putational experience for the difficulties largely stem from the use of Runge-Kutta
(RK) methods for solving DAE optimal control problems. One question we pose
in this paper is: are DAE problems fundamentally difficult regardless of the com-
putational method, or are the source of difficulties largely in the computational
technique itself? The conventional wisdom points towards the former. In this pa-
per we suggest that it might be the latter, and if so, a new DAE theory of difficulty
is warranted.

An overview of our line of argument is as follows: Since the year 2007 when
NASA implemented20 a PS solution onboard the International Space Station, PS op-
timal control techniques have become the method of choice for solving “NASA-hard”
problems.3,6, 23,24,36 As noted earlier, many of these practical problems are high-
dimensional and differential-algebraic in nature. DAE theory or index-reduction
techniques have never been used to solve these problems. Although unlikely, it is
quite possible that all these problems were fortuitously low-index DAE optimal con-
trol problems. As a simple means to test the fundamental question related to the
source of the hardship, a quick approach is to compare the numerically difficulties in
solving a hard, high-index DAE problem using both RK and PS methods. To this
end, we investigate the high-index DAE optimal control considered by Campbell
et al.9,11 They showed that the suite of RK methods implemented in SOCX —
a state-of-the-art nonlinear-programming-based FORTRAN optimal control solver4

— failed to provide a solution to this problem without an index-reduction process.9

Similar difficulties were reported with other discretization methods and various
other software tools.9,11 Because DIDO c©, a state-of-the-art MATLABr optimal
control solver27 was never used in their studies, this paper “completes” this effort.
As shown in this paper, DIDO is able to solve the challenge problem without any
difficulty leading to the conclusion that a new theory of difficulty for DAEs might
be warranted.

2 The Challenge Problem

The challenge problem posed by Campbell and Kunkel9 is to minimize the quadratic
cost functional,

J(x, u) =

∫ T

0

cu2 + d(x− L sin(t+ α))
2

+ d(y − L cos(t+ α))
2
dt (1)

subject to the constraints:

(D) :


ẍ = −λx− aẋ+ uy

ÿ = −λy − aẏ − g − ux
0 = x2 + y2 − L2

x(0) = 0 y(0) = L ẋ(0) = 0 ẏ(0) = 0

(2)
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The initial-value problem, (D), describes the motion of a simple pendulum of length
L in the Cartesian plane. The control, u, is taken as the force applied tangentially
to the motion of the pendulum bob. Nonlinear function, λ, represents the internal
force necessary to satisfy the algebraic constraint in Eq. (2), which ensures that the
motion stays on the circle. Parameter a is a damping coefficient, and g represents
the acceleration due to gravity. The cost functional in Eq. (1) seeks to minimize the
error in tracking a moving target which leads the pendulum in phase by an amount,
α, with an additional penalty on the control effort. In Eq. (1), parameters c and d
are weights used to emphasize either control-effort or tracking.

The optimal control problem as posed in Eqs. (1) and (2) can be solved quite
directly using second-order PS differentiation matrices;7,28,29,32,35 however, we fol-
low Campbell et al9 in first transforming the second-order system to a standard
state-space form:

(DI)



ẋ1 = x2

ẋ2 = −x5x1 − ax2 + ux3

ẋ3 = x4

ẋ4 = −x5x3 − ax4 − g − ux1
0 = x21 + x23 − L2 (3)

x1(0) = 0 x2(0) = L x3(0) = 0 x4(0) = 0

where variables, x, ẋ, y, ẏ are denoted by x1, x2, x3, x4 and λ is now denoted by x5.
According to Ref. [9], the index of the algebraic constraint in Eq. (3) is three.

Sophisticated nonlinear programming techniques together with several advanced
direct transcription (DT) methods were used in Ref. [9] to solve the DAE optimal
control problem. The success or failure of the various approaches was shown to
be strongly dependent on how the problem was transformed for computation. In
particular, Campbell and Kunkel9 showed that it is crucial to properly transform
the problem for DT methods to be successful in the presence of high index DAEs.
Various techniques, including index reduction, were applied to problem (D), some
which worked, and others which did not. The reader is encouraged to read [9] for an
in-depth discussion on the difficulties of solving higher index DAE optimal control
processes.

3 A Pseudospectral Answer to the Challenge Prob-
lem

The optimal control problem given by Eqs. (3) and (1) was coded as given and
solved in DIDO. The data for problem (DI) are exactly the same as those used in
Ref. [9], and are given as: a = 0.5, c = 1, d = 100, g = 4, L = 2, and T = 2.2.
The results are shown in Figures 1 through 4. A visual inspection of the numerical
solution shows that the results obtained using the PS method implemented in DIDO
are the same as those presented in [9], where the latter solution was obtained by
modifying the original problem given by Eqs. (3) into a mathematically equivalent
form with no path constraints (see Figures 2 and 3 of [9]).

It is also worth noting that DIDO does not require a “guess” to use the soft-
ware.30 In order words, the solution presented in Figures 1 through 4 is “unbiased”
from a user’s perspective. Because there was no clear difficulty in generating this
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Figure 1: Candidate optimal state trajectory in x1, x3 plane.

solution, our results immediately suggest the need for a new DAE theory of diffi-
culty.

4 An Independent Verification of Feasibility

At NASA and elsewhere in the industry, it is not sufficient to generate a solution as
presented in Figures 1 through 4 without subjecting it to a battery of mathematical
and engineering tests. Furthermore, an argument that the residuals are small (e.g.,
10−8) is well-established to be irrelevant15,17,30,31 because it is possible to produce
a wrong answer — even an infeasible one — with very small “collocation errors.” A
standard industry practice in testing the accuracy of a control solution is to subject
it to an established propagation technique and compute certain critical functions of
the propagated state variables; see Refs. [27] and [30] for further details. In following
this industrial rigor, we interpolate the control solution presented in Figure 2 to
generate u(t) ∀ t ∈ [0, T ] and propagate the initial conditions through the ODE
ẋ = f(x, u(t)) using ode45 in MATLAB.

Figure 5 shows a result from this test. The DIDO result of Figure 1 is overlaid
on Figure 5. It is visually apparent that there is excellent agreement between the
propagated solution and the DIDO states. Numerically, this agreement is within
±1× 10−4. This number is well within typical industry tolerances for errors; hence
we declare the numerical optimal control solution is a dynamically feasible solution
to problem (DI).

Using the propagated values of the state variables, we now evaluate the feasibility
of the algebraic constraint, x21 + x23 − L2 = 0. Figure 6 shows that the algebraic
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Figure 2: Candidate optimal control solution.

constraint, evaluated using the propagated states, is met to well within ±1× 10−4.
As a result, we now declare that that the DIDO solution is an independently-verified,
high-quality, DAE-feasible solution to problem (DI).

It is important to note that we used RK techniques for propagation; not for op-
timization. In a typically industry setting, a myriad of alternative verification tools
are used to gauge the quality of a solution.3,23,24,31 Furthermore, a determination
of the quality of the solution is specific to the application. For instance, in the case
of the Kepler spacecraft, a pointing accuracy of milliarc seconds is mission critical.
This level of accuracy was obtained in [24] using a mere 30 PS nodes in DIDO. In
other applications, fewer or higher number of PS nodes may be necessary based on
the specific tolerance requirements as gauged by a suite of independent verification
tools and not on the nonlinear programming tolerance settings.

5 Possible Explanations for the Success of PS Tools

In this section, we offer a suite of possible explanations for the success/failure of
PS/RK methods and their various implementations. We break up our explanations
in terms of information that is specific to problem (DI) and the general differences
between PS/RK methods and their software implementations.

5.1 Necessary Conditions for Optimality

The necessary conditions for optimality of problem (DI) can be easily obtained
by a straightforward application of Pontryagin’s Minimum Principle.27 At the
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Figure 3: State solution for x1 with target (dashed line).

heart of Pontryagin’s Minimum Principle is the Hamiltonian Minimization Con-
dition (HMC). The HMC states that, for an extremal control u∗ to be optimal, it
must minimize the control Hamiltonian at each instant of time. Due to the presence
of state-dependent path constraints in problem (DI), the necessary conditions from
the HMC are obtained from the Lagrangian (of the control Hamiltonian):

H(µ,λ,x,u, t) = H(λ,x,u, t) + µᵀh(x,u, t) (4)

where x,λ,u, represent the vectors of state, costate, and control and are of dimen-
sion Nx, Nx and Nu. The scalar-valued function H(λ,x,u, t) ∈ R is the control
Hamiltonian, µ ∈ RNp the path covectors associated with the HMC, and the vector-
function h(x,u, t) ∈ RNh corresponds to the path constraint(s) of dimension Nh.
A necessary condition is that the Lagrangian of the Hamiltonian be stationary with
respect to the control u:

∂H

∂u
=
∂H

∂u
+

(
∂h

∂u

)T
µ = 0 ∈ RNu (5)

Along with the stationarity condition, the KKT conditions require the individual
path covectors, µi, satisfy the complementarity conditions:

µi


≥ 0 if hi(x, u) = hUi
= 0 if hLi < hi(x, u) < hUi
≤ 0 if hi(x, u) = hLi

(6)

where hL,hU ∈ RNp serve as lower and upper bounds for the vector of path con-
straints (h), i.e. hL ≤ h(x,u, t) ≤ hU .
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Figure 4: State solution for x2 with target (dashed line).

Because there is only one path constraint, vector-function h reduces to a scalar
function and is further dependent only on the state so h(x) = x21 + x23 − L2. The
Lagrangian of the control Hamiltonian is thus given by:

H(µ,λ,x,u, t) = cu2 + d(x− L sin(t+ α))2 + d(x3 − L cos(t+ α))2

+ λx1
x2 + λx2

(−x5x1 − ax2 + ux3)+ λx3
x4 + λx4

(−x5x3 − ax4 − g − ux1)

+ µ
(
x21 + x23 − L2

)
(7)

where the subscripts on each costate corresponds to the associated state variable.
From the stationary condition, the necessary conditions on the controls may be

derived. Firstly,

∂H

∂u
= u− 1

2c
(λx4

x1 − λx2
x3)= 0 (8)

from which we obtain

u =
1

2c
(λx4

x1 − λx2
x3) (9)

Secondly, we have

∂H

∂x5
= −λx2x1 − λx4x3 = 0 (10)

Because x5 appears linearly in Eq. (7), the optimal control is singular.8 Nonetheless
in the next section, Eq. 10 will be used to verify the optimality of x5.
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Figure 5: Feasibility of a PS solution to problem (DI). Legend: data points – PS
solution; solid line – propagation of the optimal controls.

Due to the presence of the path constraint the adjoint variables for problem

(DI) evolve according to −λ̇ =
∂H

∂x
. The adjoint equations are given as follows:

−λ̇x1
= 2d(x1 − L sin(t+ α))− λx2

x5 − λx4
u+ 2µx1 (11)

−λ̇x2
= λx1

− aλx2
(12)

−λ̇x3 = 2d(x3 − L cos(t+ α))+ λx2u− λx4x5 + 2µx3 (13)

−λ̇x4
= λx3

− aλx4
(14)

Finally, the terminal transversality conditions are given by λ(tf ) =
∂E

∂x(tf )
. Since

problem (DI) only specifies initial values, the terminal state does not appear in the
endpoint Lagrangian. Hence, the value of all the costates must be zero at the final
time T , i.e.

[λx1
(T ), λx2

(T ), λx3
(T ), λx4

(T )] = 0 (15)

5.2 Verification of the Necessary Conditions via DIDO

In addition to the primal variables, DIDO also outputs a suite of dual variables.
This does not imply that DIDO implements and “indirect” PS method. Its interface
to the user is only the “direct” problem formulation. Because the necessary condi-
tions are eventually procedural, DIDO “derives” these conditions and implements it
via the covector mapping principle (CMP).27 Hence, the recommended approach27

to using DIDO is to apply it a “mathematical tool” for solving optimal control
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Figure 6: Satisfaction of algebraic constraint, x21 + x23 − L2 = 0, using propagated
optimal control.

problems. In other words, if the problem formulation or its necessary conditions
exhibit certain pathological behavior, DIDO will reflect it. Typical pathologies to
avoid in using DIDO are unboundedness (e.g., variables going to infinity inside the
search space) and nonsmoothness in data or its Jacobians (e.g., the square root
function). Singular arcs and DAEs are not considered pathological. Hence,
from an analysis of the necessary conditions derived in Section 5.1, it is apparent
that DIDO should work.

A plot of the DIDO-generated costates is shown in Figure 7. It is clear from this
figure that all the costates take the value zero at the terminal time. In other words,
the terminal transversality condition given by Eq. (15) is satisfied numerically.

Equation (9) gives an expression for the control, u, in terms of the costates.
Plotting both sides of the equation, as is done in Figure 8, illustrates that the nu-
merical solution adheres to the necessary condition on the regular control. Similarly,
we plot λx2

x1 against −λx4
x3 to check the condition on the singular control given

by Eq. (10). Figure 9 shows that Eq. (10) is also satisfied by the numerical solution
to problem DI . Thus, we may reasonably conclude that the control presented in
Figure 2 is an extremal solution to problem DI . Furthermore, we note that there
was no major issue in solving a DAE problem with a singular arc.

5.3 An Overview of Why PS Theory Works

Since the year 2007, PS optimal control methods have rapidly evolved to the status
of a fundamentally new approach to optimal control theory itself. See Ref. [31] and
the references contained therein for details of this concept. In broad terms, PS opti-
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Figure 7: Costates associated with the state variables.

mal control theory is based on two fundamentals:31 (i) a continuous state-trajectory
can be approximated to any precision by a sufficiently high-order polynomial, and
(ii) the covector trajectories associated with an optimal control problem can be ap-
proximated to spectral accuracy by a transformation of the multipliers associated
with the discrete mathematical programming problem. The first point is a direct
consequence of the Stone-Weierstrass theorem31,33 , and the second point has been
established as part of the CMP.18,31 Furthermore, convergence theory of PS optimal
control does not rely on the CMP, rather it is based on a combination of Polak’s
notion of consistent approximation26 and the classic Arzelà-Ascoli theorem.34 The
reader is directed to [16, 19, 21, 22, 31] for details. Singular arcs and the index of
a DAE do not directly enter in the proof of convergence of PS methods. Conse-
quently, such issues do not appear to be detrimental to a proper implementation of
PS methods. In contrast, proofs of convergence of RK methods rely on very strong
assumptions that are frequently not satisfied in many practical applications.

6 Conclusion

Great care must be exercised in drawing negative conclusions from software tools
and/or näıve implementations of computational methods. For instance, it is very
easy to implement a “bad” RK or PS method by deliberately or inadvertently
choosing incorrect/inaccurate coefficients, grids, weights etc. Even if sophisticated
nonlinear programming solvers are “patched” to inappropriate discretization tech-
niques, the resulting “advanced method” can be shown to fail for the simplest of the
problems. Hence, if a particular implementation does not work, it is inappropriate
to conclude a negative result unless it is consistent with theoretical predictions. In
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Figure 8: Verification of the necessary condition in Eq. (9).

the same spirit, if a particular approach routinely provides consistent results that
“defies theory,” then it is the theory that must be questioned.

Singular arcs and DAEs are frequently encountered in practical industry appli-
cations. These problems have been routinely solved over the last two decades using
proper implementations of PS optimal control techniques. Because of the higher
failure rates of RK methods, PS methods have gradually replaced legacy optimiza-
tion methods, particularly in new and emerging problems in aerospace engineering.
It is quite possible that one may be able to construct an innocuous DAE problem
that cannot be solved by any PS method. Consequently, a new theory of difficulty
for DAEs is warranted.
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