297 research outputs found
Beta decay of 71,73Co; probing single particle states approaching doubly magic 78Ni
Low-energy excited states in 71,73Ni populated via the {\beta} decay of
71,73Co were investigated in an experiment performed at the National
Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU).
Detailed analysis led to the construction of level schemes of 71,73Ni, which
are interpreted using systematics and analyzed using shell model calculations.
The 5/2- states attributed to the the f5/2 orbital and positive parity 5/2+ and
7/2+ states from the g9/2 orbital have been identified in both 71,73Ni. In 71Ni
the location of a 1/2- {\beta}-decaying isomer is proposed and limits are
suggested as to the location of the isomer in 73Ni. The location of positive
parity cluster states are also identified in 71,73Ni. Beta-delayed neutron
branching ratios obtained from this data are given for both 71,73Co.Comment: Accepted for publication in PR
Penning trap mass measurements on (99-109)$Cd with ISOLTRAP and implications on the rp process
Penning trap mass measurements on neutron-deficient Cd isotopes (99-109)Cd
have been performed with the ISOLTRAP mass spectrometer at ISOLDE/CERN, all
with relative mass uncertainties below 3*10^8. A new mass evaluation has been
performed. The mass of 99Cd has been determined for the first time which
extends the region of accurately known mass values towards the doubly magic
nucleus 100Sn. The implication of the results on the reaction path of the rp
process in stellar X-ray bursts is discussed. In particular, the uncertainty of
the abundance and the overproduction created by the rp-process for the mass A =
99 is demonstrated by reducing the uncertainty of the proton-separation energy
of 100In Sp(100In) by a factor of 2.5.Comment: 14 pages, 9 figure
The rp-process and new measurements of beta-delayed proton decay of light Ag and Cd isotopes
Recent network calculations suggest that a high temperature rp-process could
explain the abundances of light Mo and Ru isotopes, which have long challenged
models of p-process nuclide production. Important ingredients to network
calculations involving unstable nuclei near and at the proton drip line are
-halflives and decay modes, i.e., whether or not -delayed proton
decay takes place. Of particular importance to these network calculation are
the proton-rich isotopes Ag, Ag, Cd and Cd. We
report on recent measurements of -delayed proton branching ratios for
Ag, Ag, and Cd at the on-line mass separator at GSI.Comment: 4 pages, uses espcrc1.sty. Proceedings of the 4th International
Symposium Nuclei in the Cosmos, June 1996, Notre Dame/IN, USA, Ed. M.
Wiescher, to be published in Nucl.Phys.A. Also available at
ftp://ftp.physics.ohio-state.edu/pub/nucex/nic96-gs
Renormalization of the weak hadronic current in the nuclear medium
The renormalization of the weak charge-changing hadronic current as a
function of the reaction energy release is studied at the nucleonic level. We
have calculated the average quenching factors for each type of current (vector,
axial vector and induced pseudoscalar). The obtained quenching in the axial
vector part is, at zero momentum transfer, 19% for the sd shell and 23% in the
fp shell. We have extended the calculations also to heavier systems such as
Ni and Sn, where we obtain stronger quenchings, 44% and 59%,
respectively. Gamow--Teller type transitions are discussed, along with the
higher order matrix elements. The quenching factors are constant up to roughly
60 MeV momentum transfer. Therefore the use of energy-independent quenching
factors in beta decay is justified. We also found that going beyond the zeroth
and first order operators (in inverse nucleon mass) does not give any
substantial contribution. The extracted renormalization to the ratio
at q=100 MeV is -3.5%, -7.1$%, -28.6%, and +8.7% for mass 16, 40, 56, and 100,
respectively.Comment: 28 pages, 6 figure
Improving Fission-product Decay Data for Reactor Applications: Part I -- Decay Heat
Effort has been expended to assess the relative merits of undertaking further
decay-data measurements of the main fission-product contributors to the decay
heat of neutron-irradiated fissile fuel and related actinides by means of Total
Absorption Gamma-ray Spectroscopy (TAGS/TAS) and Discrete Gamma-ray
Spectroscopy (DGS). This review has been carried out following similar work
performed under the auspices of OECD/WPEC-Subgroup 25 (2005-2007) and the
International Atomic Energy Agency (2010, 2014), and various highly relevant
TAGS measurements completed as a consequence of such assessments. We present
our recommendations for new decay-data evaluations, along with possible
requirements for total absorption and discrete high-resolution gamma-ray
spectroscopy studies that cover approximately 120 fission products and various
isomeric states.Comment: Submitted to European Physical Journal
Radioactive decays at limits of nuclear stability
The last decades brought an impressive progress in synthesizing and studying
properties of nuclides located very far from the beta stability line. Among the
most fundamental properties of such exotic nuclides, usually established first,
is the half-life, possible radioactive decay modes, and their relative
probabilities. When approaching limits of nuclear stability, new decay modes
set in. First, beta decays become accompanied by emission of nucleons from
highly excited states of daughter nuclei. Second, when the nucleon separation
energy becomes negative, nucleons start to be emitted from the ground state.
Here, we present a review of the decay modes occurring close to the limits of
stability. The experimental methods used to produce, identify and detect new
species and their radiation are discussed. The current theoretical
understanding of these decay processes is overviewed. The theoretical
description of the most recently discovered and most complex radioactive
process - the two-proton radioactivity - is discussed in more detail.Comment: Review, 68 pages, 39 figure
Experimental study of the β decay of the very neutron-rich nucleus Ge 85
The β-decay properties of the very neutron-rich nucleus Ge85, produced in the proton-induced fission of U238, were studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The level scheme of As523385 populated in Ge85βγ decay was reconstructed and compared to shell-model calculations. The investigation of the systematics of low-energy levels in N=52 isotones together with shell-model analysis allowed us to provide an estimate of the low-energy structure of the more exotic N=52 isotone Cu81
βdecays of \u3csup\u3e92\u3c/sup\u3eRb, \u3csup\u3e96gs\u3c/sup\u3eY, and \u3csup\u3e142\u3c/sup\u3eCs measured with the modular total absorption spectrometer and the influence of multiplicity on total absorption spectrometry measurements
Total absorption spectroscopy is a technique that helps obtain reliable β-feeding patterns of complex decays important for nuclear structure and astrophysics modeling as well as decay heat analysis in nuclear reactors. The need for improved measurements of β-feeding patterns from fission decay products has come to the forefront of experiments that use nuclear reactors as a source of antineutrinos. Here we present more detailed results, in particular the β-decay measurements of 96gsY, and demonstrate the impact of the β-delayed γ multiplicity on the overall efficiency of Modular Total Absorption Spectrometer used at Oak Ridge National Laboratory to study the decays of fission products abundant during a nuclear fuel cycle
- …