9,771 research outputs found

    Carbon and oxygen isotope composition of carbonates from an L6 chondrite: Evidence for terrestrial weathering from the Holbrook meteorite

    Get PDF
    Terrestrial weathering in meteorites is an important process which alters pristine elemental and isotopic abundances. The Holbrook L6 chondrite fell in 1912. Material was recovered at the time of the fall, in 1931, and 1968. The weathering processes operating on the freshly fallen meteorite in a semi-arid region of northeastern Arizona have been studied after a ground residence of 19 and 56 years. It has been shown that a large portion of the carbonate material in 7 Antarctic ordinary chondrites either underwent extensive isotopic exchange with atmospheric CO2, or formed recently in the Antarctic environment. In fact it has been demonstrated that hydrated Mg-carbonates, nesquehonite and hydromagnesite, formed in less than 40 years on LEW 85320. In order to help further constrain the effects of terrestrial weathering in meteorites, the carbon and oxygen isotopes extracted from carbonates of three different samples of Holbrook L6: a fresh sample at the time of the fall in 1912, a specimen collected in 1931, and a third specimen collected at the same site in 1968

    Near- to mid-infrared picosecond optical parametric oscillator based on periodically poled RbTiOAsO4

    Get PDF
    We describe a Ti:sapphire-pumped picosecond optical parametric oscillator based on periodically poled RbTiOAsO4 that is broadly tunable in the near to mid infrared. A 4.5-mm single-grating crystal at room temperature in combination with pump wavelength tuning provided access to a continuous-tuning range from 3.35 to 5 mu m, and a pump power threshold of 90 mW was measured. Average mid-infrared output powers in excess of 100 mW and total output powers of 400 mW in similar to 1-ps pulses were obtained at 33% extraction efficiency. (C) 1998 Optical Society of America.</p

    Parameterization of the Angular Distribution of Gamma Rays Produced by p-p Interaction in Astronomical Environment

    Get PDF
    We present the angular distribution of gamma rays produced by proton-proton interactions in parameterized formulae to facilitate calculations in astrophysical environments. The parameterization is derived from Monte Carlo simulations of the up-to-date proton-proton interaction model by Kamae et al. (2005) and its extension by Kamae et al. (2006). This model includes the logarithmically rising inelastic cross section, the diffraction dissociation process and Feynman scaling violation. The extension adds two baryon resonance contributions: one representing the Delta(1232) and the other representing multiple resonances around 1600 MeV/c^2. We demonstrate the use of the formulae by calculating the predicted gamma-ray spectrum for two different cases: the first is a pencil beam of protons following a power law and the second is a fanned proton jet with a Gaussian intensity profile impinging on the surrounding material. In both cases we find that the predicted gamma-ray spectrum to be dependent on the viewing angle.Comment: 8 pages, 7 figures, figure 7 updated, accepted for publication in ApJ, text updated to match changes by the editor, two refs updated from preprints to full journal

    Magnitude and Origin of CO2 Evasion From High-Latitude Lakes

    Get PDF
    Lakes evade significant amounts of carbon dioxide (CO2) to the atmosphere; yet the magnitude and origin of the evasion are still poorly constrained. We quantified annual CO2 evasion and its origin (in-lake net ecosystem production vs. lateral inputs from terrestrial ecosystems) in 14 high-latitude lakes through high-frequency estimates of open water CO2 flux and ecosystem metabolism and inorganic carbon mass-balance before and after ice breakup. Annual CO2 evasion ranged from 1 to 25 g C m(-2) yr(-1) of which an average of 57% was evaded over a short period at ice-breakup. Annual internal CO2 production ranged from -6 to 21 g C m(-2) yr(-1), of which at least half was produced over winter. The contribution of internal versus external source contribution to annual CO2 evasion varied between lakes, ranging from fully internal to fully external with most lakes having over 75% of the evasion sustained through a single source. Overall, the study stresses the large variability in magnitude and control of CO2 evasion and suggests that environmental change impacts on CO2 evasion from high-latitude lakes are not uniform

    EXPRESSION OF A FUNCTIONAL CHIMERIC lg-MHC CLASS II PROTEIN

    Get PDF
    composed of the a- and ß-chains of the MHC class I1 I-E molecule fused to antibody V regions derived from anti-human CD4 mAb MT310. Expression vectors were constructed containing the functional, rearranged gene segments coding for the V region domains of the antibody H and L chains in place of the first domains of the complete structural genes of the I-E a- and ß-chains, respectively. Celltsr ansfected with both hybrid genes expressed a stable protein product on the cell surface. The chimeric molecule exhibited the idiotype of the antibody MT310 as shown by binding to the anti-idiotypic mAb 20-46. A protein of the anticipated molecular mass was immunoprecipitated witha nti-mouse IgG antiserum. Furthermore, human soluble CD4 did bind to thetr ansfected cell line, demonstrating that the chimeric protein possessed the binding capacity of the original mAb. Thus, the hybrid molecule retained: 1) the properties of a MHC class I1 protein with regardt o correct chain assembly and transport to the cell surface: as well as 2) the Ag binding capacity of the antibody genes used. Thgee neration of hybrid MHC class I1 molecules with highly specific, non-MHC-restricted bindingc apacities will be useful for studying MHC class 11-mediated effector functions such as selection of the T cell repertoire in thymus of transgenic mice

    Interaction-free measurement and forward scattering

    Get PDF
    Interaction-free measurement is shown to arise from the forward-scattered wave accompanying absorption: a "quantum silhouette" of the absorber. Accordingly, the process is not free of interaction. For a perfect absorber the forward-scattered wave is locked both in amplitude and in phase. For an imperfect one it has a nontrivial phase of dynamical origin (``colored silhouette"), measurable by interferometry. Other examples of quantum silhouettes, all controlled by unitarity, are briefly discussed.Comment: 4 pages in RevTex + 1 figure in eps; submitted to Phys. Rev. A since 09Jan98; now update

    "Assisted cloning'' and "orthogonal-complementing" of an unknown state

    Get PDF
    We propose a protocol where one can exploit dual quantum and classical channels to achieve perfect ``cloning'' and ``orthogonal-complementing'' of an unknown state with a minimal assistance from a state preparer (without revealing what the input state is). The first stage of the protocol requires usual teleportation and in the second stage, the preparer disentangles the left-over entangled states by a single particle measurement process and communicates a number of classical bits (1-cbit per copy) to different parties so that perfect copies and complement copies are produced. We discuss our protocol for producing two copies and three copies (and complement copies) using two and four particle entangled state and suggest how to generalise this for N copies and complement copies using multiparticle entangled state.Comment: 7 pages, Latex, no figures, submitted to Phys. Rev. A. 1999(to be accepted
    corecore