40 research outputs found

    Diversity of larger consumers enhances interference competition effects on smaller competitors

    Get PDF
    Competition between large and small species for the same food is common in a number of ecosystems including aquatic ones. How diversity of larger consumers affects the access of smaller competitors to a limiting resource is not well understood. We tested experimentally how species richness (0–3 spp.) of benthic deposit-feeding macrofauna changes meiofaunal ostracods’ incorporation of fresh organic matter from a stable-isotope-labeled cyanobacterial bloom, using fauna from the species-poor Baltic Sea. Presence of macrofauna mostly decreased meiofaunal incorporation of bloom material, depending on the macrofauna species present. As expected, the species identity of macrofauna influenced the incorporation of organic matter by meiofauna. Interestingly, our results show that, in addition, species richness of the macrofauna significantly reduced meiofauna incorporation of freshly settled nitrogen and carbon. With more than one macrofauna species, the reduction was always greater than expected from the single-species treatments. Field data from the Baltic Sea showed a negative correlation between macrofauna diversity and meiofaunal ostracod abundance, as expected from the experimental results. We argue that this is caused by interference competition, due to spatial niche differentiation between macrofauna species reducing the sediment volume in which ostracods can feed undisturbed by larger competitors. Interference from macrofauna significantly reduces organic matter incorporation by meiofauna, indicating that diversity of larger consumers is an important factor controlling the access of smaller competitors to a limiting food resource

    A multi-isotope approach to evaluate the potential of great cormorant eggs for contaminant monitoring

    Get PDF
    Contaminant monitoring in biota is important for determining environmental status and to detect or prioritize action on hazardous substances. Predators higher up a food chain are often used for monitoring of contaminants that bioaccumulate. However, it is not always possible to find higher predators that are both abundant and have a wide distribution for national or international contaminant monitoring. Great cormorants (Phalocrocorax carbo) are a widespread and increasingly common top predator of fish in fresh, brackish and salt water. We evaluate the suitability of great cormorant eggs as a matrix for contaminant monitoring by using stable isotopes of carbon, nitrogen and sulfur. Despite the fact that cormorants are migratory, egg isotope values showed a significant separation between five breeding colonies in Sweden (1 fresh water lake, 3 Baltic sites and 1 marine site). This high degree of separation indicates that eggs are primarily produced using local resources (not stored body resources) and that contaminants (mercury concentrations in this study) measured in eggs likely reflect levels in fish prey caught close to the breeding area. Compound specific stable isotope analysis was used to estimate cormorant trophic position (TP) and concentrations of mercury in eggs were positively related to TP. The results show that a multi-isotope approach, combined with good ecological diet knowledge allow for meaningful and comparative interpretation of mercury concentrations in biota and that great cormorant eggs appear a suitable matrix to measure locally derived and maternally transferred contaminants

    Polychaete invader enhances resource utilization in a species-poor system

    Get PDF
    Ecosystem consequences of biodiversity change are often studied from a species loss perspective, while the effects of invasive species on ecosystem functions are rarely quantified. In this experimental study, we used isotope tracers to measure the incorporation and burial of carbon and nitrogen from a simulated spring phytoplankton bloom by communities of one to four species of deposit-feeding macrofauna found in the species-poor Baltic Sea. The recently invading polychaete Marenzelleriaarctia, which has spread throughout the Baltic Sea, grows more rapidly than the native species Monoporeia affinis, Pontoporeia femorata (both amphipods) and Macoma balthica (a bivalve), resulting in higher biomass increase (biomass production) in treatments including the polychaete. Marenzelleria incorporated and buried bloom material at rates similar to the native species. Multi-species treatments generally had higher isotope incorporation, indicative of utilization of bloom material, than expected from monoculture yields of the respective species. The mechanism behind this observed over-yielding was mainly niche complementarity in utilization of the bloom input, and was more evident in communities including the invader. In contrast, multi-species treatments had generally lower biomass increase than expected. This contrasting pattern suggests that there is little overlap in resource use of freshly deposited bloom material between Marenzelleria and the native species but it is likely that interference competition acts to dampen resulting community biomass. In conclusion, an invasive species can enhance incorporation and burial of organic matter from settled phytoplankton blooms, two processes fundamental for marine productivity

    Benthic use of phytoplankton blooms: uptake, burial and biodiversity effects in a species-poor system

    No full text
    Animals living in marine sediments (the second largest habitat on earth) play a major role in global biogeochemical cycling. By feeding on organic matter from settled phytoplankton blooms they produce food for higher trophic levels and nutrients that can fuel primary production. In the Baltic Sea, anthropogenic stresses, such as eutrophication and introductions of invasive species, have altered phytoplankton dynamics and benthic communities. This thesis discusses the effects of different types of phytoplankton on the deposit-feeding community and the importance of benthic biodiversity for fate of the phytoplankton bloom-derived organic matter. Deposit-feeders survived and fed on settled cyanobacterial bloom material and in doing so accumulated the cyanobacterial toxin nodularin. Their growth after feeding on cyanobacteria was much slower than on a diet of spring bloom diatoms. The results show that settling blooms of cyanobacteria are used as food without obvious toxic effects, although they do not sustain rapid growth of the fauna. Since all tested species accumulated the cyanotoxin, negative effects higher up in the food web can not be ruled out. Both species composition and richness of deposit-feeding macrofauna influenced how much of the phytoplankton bloom material that was incorporated in fauna or retained in the sediment. The mechanism behind the positive effect of species richness was mainly niche differentiation among functionally different species, resulting in a more efficient utilization of resources at greater biodiversity. This was observed even after addition of an invasive polychaete species. Hence, species loss can be expected to affect benthic productivity negatively. In conclusion, efficiency in organic matter processing depends both on pelagic phytoplankton quality and benthic community composition and species richness.At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 4: In press. Paper 5: Manuscript.</p

    Data from: Do deposit-feeders compete? Isotopic niche analysis of an invasion in a species-poor system

    No full text
    Successful establishment of invasive species is often related to the existence of vacant niches. Competition occurs when invaders use the same limiting resources as members of the recipient community, which will be reflected in some overlap of their trophic niches. The concept of isotopic niche has been used to study trophic niche partitioning among species. Here, we present a two-year field study comparing isotopic niches of the deposit-feeding community in a naturally species-poor system. The isotopic niche analyses showed no overlap between a recent polychaete invader and any of the native species suggesting that it has occupied a vacant niche. Its narrow isotopic niche suggests specialized feeding, however, the high d15N values compared to natives are most likely due to isotope fractionation effects related to nitrogen recycling and a mismatch between biological stoichiometry of the polychaete and the sediment nitrogen content. Notably, highly overlapping isotopic niches were inferred for the native species, which is surprising in a food-limited system. Therefore, our results demonstrate that invaders may broaden the community trophic diversity and enhance resource utilization, but also raise questions about the congruence between trophic and isotopic niche concepts and call for careful examination of assumptions underlying isotopic niche interpretation

    Long-term decrease in Baltic Sea blue mussel shell length

    No full text
    Multi-decadal monitoring data and archived biological samples make the rapidly changing Baltic Sea an ideal system for quantifying alterations in ecosystem function. The Baltic Sea blue mussel (Mytilus edulis trossulus) acts as a keystone species by providing food and habitat for other species, and through its filtering activity clearing the water and promoting organic matter and nutrient cycling between benthic and pelagic ecosystems. A decrease in biomass of blue mussels along with altered environmental conditions has been observed in the northern Baltic Sea over a 24-year period (1993-2016), but the size distribution of the mussels was unknown. The present study focuses on retrospective measurements of the individual shell lengths of these archived blue mussels. The mean shell length was found to be significantly lower at the end of the time series than in the beginning (11.1-11.5 mm for the years 1993-1996 compared to 10.3-10.9 mm during 2012-2015), with the proportion of larger mussels decreasing in the population. This 6% decrease in shell length translated into a significantly lower (16%) mean filtration capacity at the end of the time series compared to the beginning, influencing the ecosystem services blue mussels provide

    Nitrogen Fixed By Cyanobacteria Is Utilized By Deposit-Feeders

    No full text
    <div><p>Benthic communities below the photic zone depend for food on allochthonous organic matter derived from seasonal phytoplankton blooms. In the Baltic Sea, the spring diatom bloom is considered the most important input of organic matter, whereas the contribution of the summer bloom dominated by diazotrophic cyanobacteria is less understood. The possible increase in cyanobacteria blooms as a consequence of eutrophication and climate change calls for evaluation of cyanobacteria effects on benthic community functioning and productivity. Here, we examine utilization of cyanobacterial nitrogen by deposit-feeding benthic macrofauna following a cyanobacteria bloom at three stations during two consecutive years and link these changes to isotopic niche and variations in body condition (assayed as C:N ratio) of the animals. Since nitrogen-fixing cyanobacteria have δ<sup>15</sup>N close to -2‰, we expected the δ<sup>15</sup>N in the deposit-feeders to decrease after the bloom if their assimilation of cyanobacteria-derived nitrogen was substantial. We also expected the settled cyanobacteria with their associated microheterotrophic community and relatively high nitrogen content to increase the isotopic niche area, trophic diversity and dietary divergence between individuals (estimated as the nearest neighbour distance) in the benthic fauna after the bloom. The three surface-feeding species (<i>Monoporeia affinis, Macoma balthica</i> and <i>Marenzelleria arctia</i>) showed significantly lower δ<sup>15</sup>N values after the bloom, while the sub-surface feeder <i>Pontoporeia femorata</i> did not. The effect of the bloom on isotopic niche varied greatly between stations; populations which increased niche area after the bloom had better body condition than populations with reduced niche, regardless of species. Thus, cyanobacterial nitrogen is efficiently integrated into the benthic food webs in the Baltic, with likely consequences for their functioning, secondary production, transfer efficiency, trophic interactions, and intra- and interspecific competition.</p></div

    GLM results for δ<sup>15</sup>N and δ<sup>13</sup>C for all species.

    No full text
    <p>Only winning models according to AIC criteria are shown. The reference category for the estimate for bloom is the pre-bloom; negative values denote a decrease after bloom. The reference station is stn Uttervik.</p
    corecore