108 research outputs found

    CT ​Evaluation ​by ​Artificial ​Intelligence ​for ​Atherosclerosis, Stenosis and Vascular ​Morphology ​(CLARIFY): ​a ​Multi-Center, International Study

    Get PDF
    Background: Atherosclerosis evaluation by coronary computed tomography angiography (CCTA) is promising for coronary artery disease (CAD) risk stratification, but time consuming and requires high expertise. Artificial Intelligence (AI) applied to CCTA for comprehensive CAD assessment may overcome these limitations. We hypothesized AI aided analysis allows for rapid, accurate evaluation of vessel morphology and stenosis. Methods: This was a multi-site study of 232 patients undergoing CCTA. Studies were analyzed by FDA-cleared software service that performs AI-driven coronary artery segmentation and labeling, lumen and vessel wall determination, plaque quantification and characterization with comparison to ground truth of consensus by three L3 readers. CCTAs were analyzed for: % maximal diameter stenosis, plaque volume and composition, presence of high-risk plaque and Coronary Artery Disease Reporting & Data System (CAD-RADS) category. Results: AI performance was excellent for accuracy, sensitivity, specificity, positive predictive value and negative predictive value as follows: >70% stenosis: 99.7%, 90.9%, 99.8%, 93.3%, 99.9%, respectively; >50% stenosis: 94.8%, 80.0%, 97.0, 80.0%, 97.0%, respectively. Bland-Altman plots depict agreement between expert reader and AI determined maximal diameter stenosis for per-vessel (mean difference -0.8%; 95% CI 13.8% to -15.3%) and per-patient (mean difference -2.3%; 95% CI 15.8% to -20.4%). L3 and AI agreed within one CAD-RADS category in 228/232 (98.3%) exams per-patient and 923/924 (99.9%) vessels on a per-vessel basis. There was a wide range of atherosclerosis in the coronary artery territories assessed by AI when stratified by CAD-RADS distribution. Conclusions: AI-aided approach to CCTA interpretation determines coronary stenosis and CAD-RADS category in close agreement with consensus of L3 expert readers. There was a wide range of atherosclerosis identified through AI.info:eu-repo/semantics/publishedVersio

    Reduction in downstream test utilization following introduction of coronary computed tomography in a cardiology practice

    Get PDF
    To compare utilization of non-invasive ischemic testing, invasive coronary angiography (ICA), and percutaneous coronary intervention (PCI) procedures before and after introduction of 64-slice multi-detector row coronary computed tomographic angiography (CCTA) in a large urban primary and consultative cardiology practice. We utilized a review of electronic medical records (NotesMD®) and the electronic practice management system (Megawest®) encompassing a 4-year period from 2004 to 2007 to determine the number of exercise treadmill (TME), supine bicycle exercise echocardiography (SBE), single photon emission computed tomography (SPECT) myocardial perfusion stress imaging (MPI), coronary calcium score (CCS), CCTA, ICA, and PCI procedures performed annually. Test utilization in the 2 years prior to and 2 years following availability of CCTA were compared. Over the 4-year period reviewed, the annual utilization of ICA decreased 45% (2,083 procedures in 2004 vs. 1,150 procedures in 2007, P < 0.01) and the percentage of ICA cases requiring PCI increased (19% in 2004 vs. 28% in 2007, P < 0.001). SPECT MPI decreased 19% (3,223 in 2004 vs. 2,614 in 2007 P < 0.02) and exercise stress treadmill testing decreased 49% (471 in 2004 vs. 241 in 2007 P < 0.02). Over the same period, there were no significant changes in measures of practice volume (office and hospital) or the annual incidence of PCI (405 cases in 2004 vs. 326 cases in 2007) but a higher percentage of patients with significant disease undergoing PCI 19% in 2004 vs. 29% in 2007 P < 0.01. Implementation of CCTA resulted in a significant decrease in ICA and a corresponding significant increase in the percentage of ICA cases requiring PCI, indicating that CCTA resulted in more accurate referral for ICA. The reduction in unnecessary ICA is associated with avoidance of potential morbidity and mortality associated with invasive diagnostic testing, reduction of downstream SPECT MPI and TME as well as substantial savings in health care dollars

    a CLARIFY trial sub-study

    Get PDF
    Publisher Copyright: © 2022Background: The difference between expert level (L3) reader and artificial intelligence (AI) performance for quantifying coronary plaque and plaque components is unknown. Objective: This study evaluates the interobserver variability among expert readers for quantifying the volume of coronary plaque and plaque components on coronary computed tomographic angiography (CCTA) using an artificial intelligence enabled quantitative CCTA analysis software as a reference (AI-QCT). Methods: This study uses CCTA imaging obtained from 232 patients enrolled in the CLARIFY (CT EvaLuation by ARtificial Intelligence For Atherosclerosis, Stenosis and Vascular MorphologY) study. Readers quantified overall plaque volume and the % breakdown of noncalcified plaque (NCP) and calcified plaque (CP) on a per vessel basis. Readers categorized high risk plaque (HRP) based on the presence of low-attenuation-noncalcified plaque (LA-NCP) and positive remodeling (PR; ≥1.10). All CCTAs were analyzed by an FDA-cleared software service that performs AI-driven plaque characterization and quantification (AI-QCT) for comparison to L3 readers. Reader generated analyses were compared among readers and to AI-QCT generated analyses. Results: When evaluating plaque volume on a per vessel basis, expert readers achieved moderate to high interobserver consistency with an intra-class correlation coefficient of 0.78 for a single reader score and 0.91 for mean scores. There was a moderate trend between readers 1, 2, and 3 and AI with spearman coefficients of 0.70, 0.68 and 0.74, respectively. There was high discordance between readers and AI plaque component analyses. When quantifying %NCP v. %CP, readers 1, 2, and 3 achieved a weighted kappa coefficient of 0.23, 0.34 and 0.24, respectively, compared to AI with a spearman coefficient of 0.38, 0.51, and 0.60, respectively. The intra-class correlation coefficient among readers for plaque composition assessment was 0.68. With respect to HRP, readers 1, 2, and 3 achieved a weighted kappa coefficient of 0.22, 0.26, and 0.17, respectively, and a spearman coefficient of 0.36, 0.35, and 0.44, respectively. Conclusion: Expert readers performed moderately well quantifying total plaque volumes with high consistency. However, there was both significant interobserver variability and high discordance with AI-QCT when quantifying plaque composition.publishersversionpublishe

    Rationale and design of the CONFIRM2 (Quantitative COroNary CT Angiography Evaluation For Evaluation of Clinical Outcomes: An InteRnational, Multicenter Registry) study.

    Get PDF
    BACKGROUND In the last 15 years, large registries and several randomized clinical trials have demonstrated the diagnostic and prognostic value of coronary computed tomography angiography (CCTA). Advances in CT scanner technology and developments of analytic tools now enable accurate quantification of coronary artery disease (CAD), including total coronary plaque volume (TPV) and low attenuation plaque volume (LAP). The primary aim of CONFIRM2, (Quantitative COroNary CT Angiography Evaluation For Evaluation of Clinical Outcomes: An InteRnational, Multicenter Registry) is to perform comprehensive quantification of CCTA findings, including coronary, non-coronary cardiac, non-cardiac vascular, non-cardiac findings, and relate them to clinical variables and cardiovascular clinical outcomes. DESIGN CONFIRM2 is a multicenter, international observational cohort study designed to evaluate multidimensional associations between quantitative phenotype of cardiovascular disease and future adverse clinical outcomes in subjects undergoing clinically indicated CCTA. The targeted population is heterogenous and includes patients undergoing CCTA for atherosclerotic evaluation, valvular heart disease, congenital heart disease or pre-procedural evaluation. Automated software will be utilized for quantification of coronary plaque, stenosis, vascular morphology and cardiac structures for rapid and reproducible tissue characterization. Up to 30,000 patients will be included from up to 50 international multi-continental clinical CCTA sites and followed for 3-4 years. SUMMARY CONFIRM2 is one of the largest CCTA studies to establish the clinical value of a multiparametric approach to quantify the phenotype of cardiovascular disease by CCTA using automated imaging solutions

    Interobserver Variability Among Expert Readers Quantifying Plaque Volume and Plaque Characteristics on Coronary CT Angiography: A CLARIFY Trial Sub-Study

    Get PDF
    Background: The difference between expert level (L3) reader and artificial intelligence (AI) performance for quantifying coronary plaque and plaque components is unknown. Objective: This study evaluates the interobserver variability among expert readers for quantifying the volume of coronary plaque and plaque components on coronary computed tomographic angiography (CCTA) using an artificial intelligence enabled quantitative CCTA analysis software as a reference (AI-QCT). Methods: This study uses CCTA imaging obtained from 232 patients enrolled in the CLARIFY (CT EvaLuation by ARtificial Intelligence For Atherosclerosis, Stenosis and Vascular MorphologY) study. Readers quantified overall plaque volume and the % breakdown of noncalcified plaque (NCP) and calcified plaque (CP) on a per vessel basis. Readers categorized high risk plaque (HRP) based on the presence of low-attenuation-noncalcified plaque (LA-NCP) and positive remodeling (PR; ≥1.10). All CCTAs were analyzed by an FDA-cleared software service that performs AI-driven plaque characterization and quantification (AI-QCT) for comparison to L3 readers. Reader generated analyses were compared among readers and to AI-QCT generated analyses. Results: When evaluating plaque volume on a per vessel basis, expert readers achieved moderate to high interobserver consistency with an intra-class correlation coefficient of 0.78 for a single reader score and 0.91 for mean scores. There was a moderate trend between readers 1, 2, and 3 and AI with spearman coefficients of 0.70, 0.68 and 0.74, respectively. There was high discordance between readers and AI plaque component analyses. When quantifying %NCP v. %CP, readers 1, 2, and 3 achieved a weighted kappa coefficient of 0.23, 0.34 and 0.24, respectively, compared to AI with a spearman coefficient of 0.38, 0.51, and 0.60, respectively. The intra-class correlation coefficient among readers for plaque composition assessment was 0.68. With respect to HRP, readers 1, 2, and 3 achieved a weighted kappa coefficient of 0.22, 0.26, and 0.17, respectively, and a spearman coefficient of 0.36, 0.35, and 0.44, respectively. Conclusion: Expert readers performed moderately well quantifying total plaque volumes with high consistency. However, there was both significant interobserver variability and high discordance with AI-QCT when quantifying plaque composition

    Using patient management as a surrogate for patient health outcomes in diagnostic test evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Before a new test is introduced in clinical practice, evidence is needed to demonstrate that its use will lead to improvements in patient health outcomes. Studies reporting test accuracy may not be sufficient, and clinical trials of tests that measure patient health outcomes are rarely feasible. Therefore, the consequences of testing on patient management are often investigated as an intermediate step in the pathway. There is a lack of guidance on the interpretation of this evidence, and patient management studies often neglect a discussion of the limitations of measuring patient management as a surrogate for health outcomes.</p> <p>Methods</p> <p>We discuss the rationale for measuring patient management, describe the common study designs and provide guidance about how this evidence should be reported.</p> <p>Results</p> <p>Interpretation of patient management studies relies on the condition that patient management is a valid surrogate for downstream patient benefits. This condition presupposes two critical assumptions: the test improves diagnostic accuracy; and the measured changes in patient management improve patient health outcomes. The validity of this evidence depends on the certainty around these critical assumptions and the ability of the study design to minimise bias. Three common designs are test RCTs that measure patient management as a primary endpoint, diagnostic before-after studies that compare planned patient management before and after testing, and accuracy studies that are extended to report on the actual treatment or further tests received following a positive and negative test result.</p> <p>Conclusions</p> <p>Patient management can be measured as a surrogate outcome for test evaluation if its limitations are recognised. The potential consequences of a positive and negative test result on patient management should be pre-specified and the potential patient benefits of these management changes clearly stated. Randomised comparisons will provide higher quality evidence about differences in patient management using the new test than observational studies. Regardless of the study design used, the critical assumption that patient management is a valid surrogate for downstream patient benefits or harms must be discussed in these studies.</p

    Utility of Cardiac Magnetic Resonance to assess association between admission hyperglycemia and myocardial damage in patients with reperfused ST-Segment Elevation Myocardial Infarction

    Get PDF
    International audienceAbstract: Aims: to investigate the association between admission hyperglycemia and myocardial damage in patients with ST-segment elevation myocardial infarction (STEMI) using Cardiac Magnetic Resonance (CMR). Methods: We analyzed 113 patients with STEMI treated with successful primary percutaneous coronary intervention. Admission hyperglycemia was defined as a glucose level >= 7.8 mmol/l. Contrast-enhanced CMR was performed between 3 and 7 days after reperfusion to evaluate left ventricular function and perfusion data after injection of gadolinium-DTPA. First-pass images (FP), providing assessment of microvascular obstruction and Late Gadolinium Enhanced images (DE), reflecting the extent of infarction, were investigated and the extent of transmural tissue damage was determined by visual scores. Results: Patients with a supramedian FP and DE scores more frequently had left anterior descending culprit artery (p = 0.02 and < 0.001), multivessel disease (p = 0.02 for both) and hyperglycemia (p < 0.001). Moreover, they were characterized by higher levels of HbA(1c) (p = 0.01 and 0.04), peak plasma Creatine Kinase (p < 0.001), left ventricular end-systolic volume (p = 0.005 and < 0.001), and lower left ventricular ejection fraction (p = 0.001 and < 0.001). In a multivariate model, admission hyperglycemia remains independently associated with increased FP and DE scores. Conclusion: Our results show the existence of a strong relationship between glucose metabolism impairment and myocardial damage in patients with STEMI. Further studies are needed to show if aggressive glucose control improves myocardial perfusion, which could be assessed using CMR
    corecore