168 research outputs found

    Collagen Assembly at the Cell Surface: Dogmas Revisited

    Get PDF
    With the increased awareness about the importance of the composition, organization, and stiffness of the extracellular matrix (ECM) for tissue homeostasis, there is a renewed need to understand the details of how cells recognize, assemble and remodel the ECM during dynamic tissue reorganization events. Fibronectin (FN) and fibrillar collagens are major proteins in the ECM of interstitial matrices. Whereas FN is abundant in cell culture studies, it is often only transiently expressed in the acute phase of wound healing and tissue regeneration, by contrast fibrillar collagens form a persistent robust scaffold in healing and regenerating tissues. Historically fibrillar collagens in interstitial matrices were seen merely as structural building blocks. Cell anchorage to the collagen matrix was thought to be indirect and occurring via proteins like FN and cell surface-mediated collagen fibrillogenesis was believed to require a FN matrix. The isolation of four collagen-binding integrins have challenged this dogma, and we now know that cells anchor directly to monomeric forms of fibrillar collagens via the α1β1, α2β1, α10β1 and α11β1 integrins. The binding of these integrins to the mature fibrous collagen matrices is more controversial and depends on availability of integrin-binding sites. With increased awareness about the importance of characterizing the total integrin repertoire on cells, including the integrin collagen receptors, the idea of an absolute dependence on FN for cell-mediated collagen fibrillogenesis needs to be re-evaluated. We will summarize data suggesting that collagen-binding integrins in vitro and in vivo are perfectly well suited for nucleating and supporting collagen fibrillogenesis, independent of FN.publishedVersio

    Age-related dataset on the mechanical properties and collagen fibril structure of tendons from a murine model

    Get PDF
    Connective tissues such as tendon, ligament and skin are biological fibre composites comprising collagen fibrils reinforcing the weak proteoglycan-rich ground substance in extracellular matrix (ECM). One of the hallmarks of ageing of connective tissues is the progressive and irreversible change in the tissue mechanical properties; this is often attributed to the underlying changes to the collagen fibril structure. This dataset represents a comprehensive screen of the mechanical properties and collagen fibril structure of tendon from the tails of young to old (i.e. 1.6–35.3 month-old) C57BL6/B mice. The mechanical portion consists of the load-displacement data, as well as the derived tensile properties; the structure data consists of transmission electron micrographs of collagen fibril cross section, as well as the derived cross-sectional parameters. This dataset will allow other researchers to develop and demonstrate the utility of innovative multiscale models and approaches of the extra-cellular and physiological events of ageing of current interest to ageing research, by reducing the current reliance on conducting new mammalian experiments

    Coalignment of plasma membrane channels and protrusions (fibripositors) specifies the parallelism of tendon

    Get PDF
    The functional properties of tendon require an extracellular matrix (ECM) rich in elongated collagen fibrils in parallel register. We sought to understand how embryonic fibroblasts elaborate this exquisite arrangement of fibrils. We show that procollagen processing and collagen fibrillogenesis are initiated in Golgi to plasma membrane carriers (GPCs). These carriers and their cargo of 28-nm-diam fibrils are targeted to previously unidentified plasma membrane (PM) protrusions (here designated “fibripositors”) that are parallel to the tendon axis and project into parallel channels between cells. The base of the fibripositor lumen (buried several microns within the cell) is a nucleation site of collagen fibrillogenesis. The tip of the fibripositor is the site of fibril deposition to the ECM. Fibripositors are absent at postnatal stages when fibrils increase in diameter by accretion of extracellular collagen, thereby maintaining parallelism of the tendon. Thus, we show that the parallelism of tendon is determined by the late secretory pathway and interaction of adjacent PMs to form extracellular channels

    Reduced cell proliferation and increased apoptosis are significant pathological mechanisms in a murine model of mild pseudoachondroplasia resulting from a mutation in the C-terminal domain of COMP

    Get PDF
    Pseudoachondroplasia (PSACH) is one of the more common skeletal dysplasias and results from mutations in cartilage oligomeric matrix protein (COMP). Most COMP mutations identified to date cluster in the TSP3 repeat region of COMP and the mutant protein is retained in the rough endoplasmic reticulum (rER) of chondrocytes and may result in increased cell death. In contrast, the pathomolecular mechanism of PSACH resulting from C-terminal domain COMP mutations remain largely unknown. This study describes the generation and analysis of a murine model of mild PSACH resulting from a p.Thr583Met mutation in the C-terminal globular domain (CTD) of COMP. Mutant animals are normal at birth, but grow slower than their wild-type littermates and by 9 weeks of age they have mild short-limb dwarfism. Furthermore, by 16 months of age mutant animals exhibit severe degeneration of articular cartilage, which is consistent with early onset osteoarthritis seen in PSACH patients. In the growth plates of mutant mice the chondrocyte columns are sparser and poorly organized. Mutant COMP is secreted into the extracellular matrix, but its localization is disrupted along with the distribution of several COMP-binding proteins. Although mutant COMP is not retained within the rER there is an unfolded protein/cell stress response and chondrocyte proliferation is significantly reduced, while apoptosis is both increased and spatially dysregulated. Overall, these data suggests a mutation in the CTD of COMP exerts a dominant-negative effect on both intra- and extracellular processes. This ultimately affects the morphology and proliferation of growth plate chondrocytes, eventually leading to chondrodysplasia and reduced long bone growth

    IL-13 deficiency exacerbates lung damage and impairs epithelial-derived type 2 molecules during nematode infection

    Get PDF
    Acknowledgements This work was supported by the Wellcome Trust (203128/Z/16/Z, 110126/Z/ 15/Z, and 106898/A/15/Z) and the Medical Research Council UK (MR/ K01207X/2). TE Sutherland was supported by Medical Research Founda- tion UK joint funding with Asthma UK (MRFAUK-2015-302). We thank Andrew McKenzie (Cambridge) for providing the Il13 tm3.1Anjm mice. We further thank the Flow Cytometry, Bioimaging, Genomic Technologies, BioMS, and Bio- logical Services core facilities at the University of Manchester.Peer reviewedPublisher PD

    Live imaging of collagen deposition during skin development and repair in a collagen I – GFP fusion transgenic zebrafish line

    Get PDF
    Fibrillar collagen is a major component of many tissues but has been difficult to image in vivo using transgenic approaches because of problems associated with establishing cells and organisms that generate GFP-fusion collagens that can polymerise into functional fibrils. Here we have developed and characterised GFP and mCherry collagen-I fusion zebrafish lines with basal epidermal-specific expression. We use these lines to reveal the dynamic nature of collagen-I fibril deposition beneath the developing embryonic epidermis, as well as the repair of this collagen meshwork following wounding. Transmission electron microscope studies show that these transgenic lines faithfully reproduce the collagen ultrastructure present in wild type larval skin. During skin development we show that collagen I is deposited by basal epidermal cells initially in fine filaments that are largely randomly orientated but are subsequently aligned into a cross-hatch, orthogonal sub-epithelial network by embryonic day 4. Following skin wounding, we see that sub-epidermal collagen is re-established in the denuded domain, initially as randomly orientated wisps that subsequently become bonded to the undamaged collagen and aligned in a way that recapitulates developmental deposition of sub-epidermal collagen. Crossing our GFP-collagen line against one with tdTomato marking basal epidermal cell membranes reveals how much more rapidly wound re-epithelialisation occurs compared to the re-deposition of collagen beneath the healed epidermis. By use of other tissue specific drivers it will be possible to establish zebrafish lines to enable live imaging of collagen deposition and its remodelling in various other organs in health and disease

    Discovery of re-purposed drugs that slow SARS-CoV-2 replication in human cells

    Get PDF
    From PLOS via Jisc Publications RouterHistory: received 2021-05-27, accepted 2021-07-26, collection 2021-09, epub 2021-09-09Publication status: PublishedFunder: wellcome (london); Grant(s): 110126/Z/15/ZFunder: Wellcome (London); Grant(s): 203128/Z/16/ZFunder: NIHR Manchester Research CentreFunder: Fungal Infection TrustCOVID-19 vaccines based on the Spike protein of SARS-CoV-2 have been developed that appear to be largely successful in stopping infection. However, therapeutics that can help manage the disease are still required until immunity has been achieved globally. The identification of repurposed drugs that stop SARS-CoV-2 replication could have enormous utility in stemming the disease. Here, using a nano-luciferase tagged version of the virus (SARS-CoV-2-ΔOrf7a-NLuc) to quantitate viral load, we evaluated a range of human cell types for their ability to be infected and support replication of the virus, and performed a screen of 1971 FDA-approved drugs. Hepatocytes, kidney glomerulus, and proximal tubule cells were particularly effective in supporting SARS-CoV-2 replication, which is in-line with reported proteinuria and liver damage in patients with COVID-19. Using the nano-luciferase as a measure of virus replication we identified 35 drugs that reduced replication in Vero cells and human hepatocytes when treated prior to SARS-CoV-2 infection and found amodiaquine, atovaquone, bedaquiline, ebastine, LY2835219, manidipine, panobinostat, and vitamin D3 to be effective in slowing SARS-CoV-2 replication in human cells when used to treat infected cells. In conclusion, our study has identified strong candidates for drug repurposing, which could prove powerful additions to the treatment of COVID

    4-Sodium phenyl butyric acid has both efficacy and counter-indicative effects in the treatment of Col4a1 disease

    Get PDF
    Mutations in the collagen genes COL4A1 and COL4A2 cause Mendelian eye, kidney and cerebrovascular disease including intracerebral haemorrhage, and common collagen IV variants are a risk factor for sporadic intracerebral haemorrhage. COL4A1 and COL4A2 mutations cause endoplasmic reticulum (ER) stress and basement membrane (BM) defects, and recent data suggest an association of ER stress with intracerebral haemorrhage due to a COL4A2 mutation. However, the potential of ER-stress as a therapeutic target for the multi-systemic COL4A1 pathologies remains unclear. We performed a preventative oral treatment of Col4a1 mutant mice with the chemical chaperone phenyl butyric acid (PBA), which reduced adult intracerebral haemorrhage. Importantly, treatment of adult mice with established disease also reduced intracerebral haemorrhage. However, PBA treatment did not alter eye and kidney defects, establishing tissue specific outcomes of targeting Col4a1-derived ER stress, and therefore this treatment may not be applicable for patients with eye and renal disease. While PBA treatment reduced ER-stress and increased collagen IV incorporation into BMs, the persistence of defects in BM structure and reduced ability of the BM to withstand mechanical stress indicate PBA may be counter-indicative for pathologies caused by matrix defects. These data establish that treatment for COL4A1 disease requires a multi-pronged treatment approach that restores both ER homeostasis and matrix defects. Alleviating ER-stress is a valid therapeutic target for preventing and treating established adult intracerebral haemorrhage, but collagen IV patients will require stratification based on their clinical presentation and mechanism of their mutations

    Chemical chaperone treatment reduces intracellular accumulation of mutant collagen IV and ameliorates the cellular phenotype of a COL4A2 mutation that causes haemorrhagic stroke

    Get PDF
    Haemorrhagic stroke accounts for approximately 20% of stroke cases and porencephaly is a clinical consequence of perinatal cerebral haemorrhaging. Here we report the identification of a novel dominant G702D mutation in the collagen domain of COL4A2 (collagen IV alpha chain 2) in a family displaying porencephaly with reduced penetrance. COL4A2 is the obligatory protein partner of COL4A1 but in contrast to most COL4A1 mutations, the COL4A2 mutation does not lead to eye or kidney disease. Analysis of dermal biopsies from patient and his unaffected father, who also carries the mutation, revealed that both display basement membrane (BM) defects. Intriguingly, defective collagen IV incorporation into the dermal BM was only observed in the patient and was associated with endoplasmic reticulum (ER) retention of COL4A2 in primary dermal fibroblasts. This intracellular accumulation led to ER-stress, unfolded protein response activation, reduced cell proliferation and increased apoptosis. Interestingly, absence of ER retention of COL4A2 and ER-stress in cells from the unaffected father indicate that accumulation and/or clearance of mutant COL4A2 from the ER may be a critical modifier for disease development. Our analysis also revealed that mutant collagen IV is degraded via the proteasome. Importantly, treatment of patient cells with a chemical chaperone decreased intracellular COL4A2, ER-stress and apoptosis, demonstrating that reducing intracellular collagen accumulation can ameliorate the cellular phenotype of COL4A2 mutations. Importantly, these data highlight that manipulation of chaperone levels, intracellular collagen accumulation and ER-stress are potential therapeutic options for collagen IV diseases including haemorrhagic stroke
    corecore