17 research outputs found

    Insulation of traditional Indian clothing: estimation of climate change impact on productivity from PHS (predicted heat strain) model

    Get PDF
    Major databases on western clothing and their thermal properties are available, but information on non-western clothing is lacking. A recent ASHRAE project 1504 TRP, Extension of the Clothing Insulation Database for Standard 55 and ISO 7730 dealt with the issue. Simultaneously, a co-operation study at Indian workplaces allowed us to acquire some sets of the traditional clothes used at construction sites in Chennai area. The work was related to mapping of present work conditions in order to allow predictions and measures to be taken if the mean temperature of the work environment would rise. We selected ISO 7933 on predicted heat strain (PHS) as a tool to estimate productivity loss in physical work. PHS criteria are related to reaching safe body core temperature limit of 38 °C or excess water loss. 3 sets of clothing were investigated: 2 female sets of traditional clothes (churidar and saree) modified as used at construction site (added shirt and towel to protect traditional clothes and hair), and a male set commonly used at the construction sites. The clothing insulation and evaporative resistance were measured on thermal manikins. The climatic conditions were based on weather statistics, and metabolic heat production was based on field observations at work places and the ISO 8996:2004 tables (Ergonomics of the thermal environment — Determination of metabolic rate). For the future scenarios all basic parameters were left the same except the air temperature was increased by 2 °C. Adding the protective layer on female clothing did increase clothing insulation by 25-31 % and evaporative resistance by 10-18 % respectively. This affected the performance showing lower capacity to maintain work pace already under present climatic conditions. Further increase in mean air temperature may decrease the productivity by 30-80 % depending on the parameter that is observed (limited exposure time or lower work load), and on the earlier capacity to carry out the tasks. The present evaluation may have several limitations related to the PHS model's boundaries, and validation of the presented method application is needed

    A database of static clothing thermal insulation and vapor permeability values of non-western ensembles for use in ASHRAE Standard 55, ISO 7730, and ISO 9920 CH-15-018 (RP-1504)

    Get PDF
    Four different thermal manikins (male and female shapes) in three different laboratories (UK, Sweden, and China) were used to determine the clothing thermal insulation values of 52 non-Western, mainly indoor clothing ensembles in order to expand the existing clothing database for use with ANSI/ ASHRAE Standard 55-2013, Thermal Environmental Conditions for Human Occupancy (ASHRAE 2013a), ISO Standard 7730-2005, Ergonomics oftheThermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria (ISO 2005), and ISO Standard 9920-2009,Ergonomics of the Thermal Environment—Estimation of Thermal Insulation and Water Vapour Resistance of a Clothing Ensemble (ISO 2009). Insulation values varied over manikins, which is attributed to their different shapes and the different fit of the clothing. The mean value over three manikins is reported (with standard deviation) to include this potential real-life variation in the results. The relation of the clothing surface area factor to intrinsic clothing insulation was found to be different from that published for Western clothing. Prediction equations for the clothing surface area factor fcl based on the new data had only limited predictive power, which, however, was also the case for those obtained in the past for Western clothing. This issue seems to be commonly overlooked, as the use of these prediction equations is widespread. It has to be concluded that reliable fcl values can only be obtained when they are actually measured, as in the present work. However, we suggest that the concept of the fcl factor for the non-Western clothing may not be appropriate and may require further attention in research, as wide-falling-robes and gowns do not match the cylindrical clothing and air layer model on which the fcl concept is based. In summary, the results provide an extensive database of insulation values of non-Western clothing that is expected to be a valuable addition to ASHRAE Standard 55-2013 (ASHRAE 2013a), ISO Standard 7730-2005 (ISO 2005), and ISO Standard 9920-2009 (ISO 2009)

    Report on manikin measurements for ASHRAE 1504-TRP: Extension of the Clothing Insulation Database for Standard 55 and ISO 7730 to provide data for Non-Western Clothing Ensembles, including data on the effect of posture and air movement on that insulation. Results of Cooperative Research between the American Society of Heating Refrigerating and Air Conditioning Engineers, Inc., and the Universities of Loughborough, Lund, Cornell and Hong Kong.

    Get PDF
    ASHRAE standard 55, ISO 7730 and chapter 9 in ASHRAE Handbook-Fundamentals titled ‘thermal comfort’ provide guidance for the assessment of thermal comfort in buildings. As inputs, the method uses climate parameters, the users’ activity level and the clothing insulation of the garments worn by the occupants. The standard provides guidance on the determination of these parameters and provides examples of values for activity level and clothing insulation. However, for the latter, the emphasis is on western style clothing, while in large parts of the world other clothing styles are worn, e.g. shalwar kameez in Pakistan, African clothing in Nigeria or Sarees in India. In order to use the methodology of ASHRAE 55 in non-western regions, insulation data for such clothing is required. In the present project, ASHRAE 1504-RP, such data was collected for a range of non-western clothing types. Four different thermal manikins (male and female shapes) in three different laboratories (UK, Sweden and China), were used to determine the clothing insulation values of 52 clothing configurations. These fifty two configurations were also tested for the effects of air velocity on insulation and forty three were tested for the effects of posture (sitting) and walking. The observed reductions in insulation for both air velocity and walking are higher than those presented in the literature for western ensembles, emphasizing the need for these new data. This effect is most likely related to more open weave fabrics and loose fit designs. Similarly the relation of the clothing surface area factor to intrinsic clothing insulation was different from that published for western clothing. Prediction equations for the clothing surface area factor fcl, based on the new data only had limited predictive power, which however was also the case for those obtained in the past for western clothing. This issue seems to be commonly overlooked, as the use of these prediction equations is widespread. It has to be concluded that reliable fcl values can only be obtained when these are actually measured as in the present work. Having said this, the concept of the fcl factor for the non-western clothing may not work in the first place, as the wide falling robes and gowns do not match the cylindrical clothing and air layer model on which the fcl concept is based. The results provide an extensive database of insulation values of non-western clothing styles in different wear configurations, in different air velocities, postures and movement. As such this is expected to be a valuable addition to ASHRAE 55 and ISO 7730 and ISO 9920. In addition, data obtained on the insulation of individual body parts can be used by CFD modelers to incorporate realistic insulation data in their models

    Preclinical Development of ADCT-601, a Novel Pyrrolobenzodiazepine Dimer-based Antibody-drug Conjugate Targeting AXL-expressing Cancers

    Get PDF
    AXL, a tyrosine kinase receptor that is overexpressed in many solid and hematologic malignancies, facilitates cancer progression and is associated with poor clinical outcomes. Importantly, drug-induced expression of AXL results in resistance to conventional chemotherapy and targeted therapies. Together with its presence on multiple cell types in the tumor immune microenvironment, these features make it an attractive therapeutic target for AXL-expressing malignancies. ADCT-601 (mipasetamab uzoptirine) is an AXL-targeted antibody–drug conjugate (ADC) comprising a humanized anti-AXL antibody site specifically conjugated using GlycoConnect technology to PL1601, which contains HydraSpace, a Val-Ala cleavable linker and the potent pyrrolobenzodiazepine (PBD) dimer cytotoxin SG3199. This study aimed to validate the ADCT-601 mode of action and evaluate its efficacy in vitro and in vivo, as well as its tolerability and pharmacokinetics. ADCT-601 bound to both soluble and membranous AXL, and was rapidly internalized by AXL-expressing tumor cells, allowing release of PBD dimer, DNA interstrand cross-linking, and subsequent cell killing. In vivo, ADCT-601 had potent and durable antitumor activity in a wide variety of human cancer xenograft mouse models, including patient-derived xenograft models with heterogeneous AXL expression where ADCT-601 antitumor activity was markedly superior to an auristatin-based comparator ADC. Notably, ADCT-601 had antitumor activity in a monomethyl auristatin E–resistant lung-cancer model and synergized with the PARP inhibitor olaparib in a BRCA1-mutated ovarian cancer model. ADCT-601 was well tolerated at doses of up to 6 mg/kg and showed excellent stability in vivo. These preclinical results warrant further evaluation of ADCT-601 in the clinic

    CLOTHING INSULATION AND THERMAL COMFORT IN AFRICA: CURRENT STANDARDS AND APPLICABILITY

    No full text
    Background: The adoption of air conditioning (AC) is growing rapidly in developing countries across the world which puts a high burden on electricity distribution systems. This development is mostly driven by income growth and building design, but also due to increasing outdoor temperatures and to provide indoor thermal comfort. Current indoor thermal comfort standards are based on western clothing (in terms of the ASHRAE Standard 55 and ISO 7730). However, due to different clothing practices in regions such as Africa, providing comfortable indoor environments may differ significantly. For optimal design and achieving energy savings of AC systems, accounting for different clothing practices is fundamental. Methods: The research presented is based on a project aimed at the extension of the ASHRAE Standard 55 database to include non-western clothing. The paper focuses on the African clothing tested on thermal manikins. Three sets of female clothing and five sets of male clothing were measured. The ISO7730:2004 standard which uses the PMV/PPD indices was used to assess the optimal indoor temperature (assessed between 20-30 °C). The occupant was considered acclimatized with low activity (120 W), with an air velocity of 0.2 m/s, no additional heat radiation and a relative humidity of 50 %. Results and Conclusion: The optimal indoor temperature for both women (PMV: -0.09, PPD: 5 %) and men (PMV: 0.1, PPD: 5 %) was found to be 24 °C. Considering better ventilation and evaporation in African clothing the comfort temperatures could be even higher. In conclusion, sub-optimal indoor thermal conditions are being adopted in Africa resulting in lower indoor air temperatures than required, causing an unnecessary waste of energy from AC systems and affecting the thermal comfort of the occupants

    In relapsed or refractory diffuse large B‐cell lymphoma, CD19 expression by immunohistochemistry alone is not a predictor of response to loncastuximab tesirine

    No full text
    Abstract CD19‐targeting treatments have shown promise in relapsed/refractory (R/R) diffuse large B‐cell lymphoma (DLBCL). Loncastuximab tesirine (loncastuximab tesirine‐lpyl [Lonca]) is a CD19‐targeting antibody‐drug conjugate indicated for R/R DLBCL after at least two systemic treatments. CD19 expression was evaluated in patients receiving Lonca in the LOTIS‐2 clinical trial with available tissue samples obtained after last systemic therapy/before Lonca treatment. Lonca cytotoxicity was evaluated in a panel of six lymphoma cell lines with various CD19 expression levels. Quantitative systems pharmacology (QSP) modelling was used to predict Lonca responses. Lonca responses were seen in patients across all CD19 expression levels, including patients with low/no detectable CD19 expression and H‐scores at baseline. Similarly, Lonca induced cytotoxicity in cell lines with different levels of CD19 expression, including one with very low expression. QSP modelling predicted that CD19 expression by immunohistochemistry alone does not predict Lonca response, whereas inclusion of CD19 surface density improved response prediction. Virtual patients responded to Lonca with estimated CD19 as low as 1000 molecules/cell of CD19, normally below the immunohistochemistry detection level. We found Lonca is an effective treatment for R/R DLBCL regardless of CD19 expression by immunohistochemistry. These results provide the basis for future studies addressing CD19‐targeted agent sequencing
    corecore