35 research outputs found

    Kti12, a PSTK-like tRNA dependent ATPase essential for tRNA modification by Elongator

    Get PDF
    Posttranscriptional RNA modifications occur in all domains of life. Modifications of anticodon bases are of particular importance for ribosomal decoding and proteome homeostasis. The Elongator complex modifies uridines in the wobble position and is highly conserved in eukaryotes. Despite recent insights into Elongator's architecture, the structure and function of its regulatory factor Kti12 have remained elusive. Here, we present the crystal structure of Kti12's nucleotide hydrolase domain trapped in a transition state of ATP hydrolysis. The structure reveals striking similarities to an O-phosphoseryl-tRNA kinase involved in the selenocysteine pathway. Both proteins employ similar mechanisms of tRNA binding and show tRNASec-dependent ATPase activity. In addition, we demonstrate that Kti12 binds directly to Elongator and that ATP hydrolysis is crucial for Elongator to maintain proper tRNA anticodon modification levels in vivo. In summary, our data reveal a hitherto uncharacterized link between two translational control pathways that regulate selenocysteine incorporation and affect ribosomal tRNA selection via specific tRNA modifications.</p

    Molecular basis of tRNA recognition by the Elongator complex

    Get PDF
    The highly conserved Elongator complex modifies transfer RNAs (tRNAs) in their wobble base position, thereby regulating protein synthesis and ensuring proteome stability. The precise mechanisms of tRNA recognition and its modification reaction remain elusive. Here, we show cryo–electron microscopy structures of the catalytic subcomplex of Elongator and its tRNA-bound state at resolutions of 3.3 and 4.4 Å. The structures resolve details of the catalytic site, including the substrate tRNA, the iron-sulfur cluster, and a SAM molecule, which are all validated by mutational analyses in vitro and in vivo. tRNA binding induces conformational rearrangements, which precisely position the targeted anticodon base in the active site. Our results provide the molecular basis for substrate recognition of Elongator, essential to understand its cellular function and role in neurodegenerative diseases and cancer

    Role of Snf1p in Regulation of Intracellular Sorting of the Lactose and Galactose Transporter Lac12p in Kluyveromyces lactis

    No full text
    The protein kinase Snf1/AMPK plays a central role in carbon and energy homeostasis in yeasts and higher eukaryotes. To work out which aspects of the Snf1-controlled regulatory network are conserved in evolution, the Snf1 requirement in galactose metabolism was analyzed in the yeast Kluyveromyces lactis. Whereas galactose induction was only delayed, K. lactis snf1 mutants failed to accumulate the lactose/galactose H(+) symporter Lac12p in the plasma membran,e as indicated by Lac12-green fluorescent protein fusions. In contrast to wild-type cells, the fusion protein was mostly intracellular in the mutant. Growth on galactose and galactose uptake could be restored by the KHT3 gene, which encodes a new transporter of the HXT subfamily of major facilitators These findings indicate a new role of Snf1p in regulation of sugar transport in K. lactis

    Key Role of Ser562/661 in Snf1-Dependent Regulation of Cat8p in Saccharomyces cerevisiae and Kluyveromyces lactis

    No full text
    Utilization of nonfermentable carbon sources by Kluyveromyces lactis and Saccharomyces cerevisiae requires the Snf1p kinase and the Cat8p transcriptional activator, which binds to carbon source-responsive elements of target genes. We demonstrate that KlSnf1p and KlCat8p from K. lactis interact in a two-hybrid system and that the interaction is stronger with a kinase-dead mutant form of KlSnf1p. Of two putative phosphorylation sites in the KlCat8p sequence, serine 661 was identified as a key residue governing KlCat8p regulation. Serine 661 is located in the middle homology region, a regulatory domain conserved among zinc cluster transcription factors, and is part of an Snf1p consensus phosphorylation site. Single mutations at this site are sufficient to completely change the carbon source regulation of the KlCat8p transactivation activity observed. A serine-to-glutamate mutant form mimicking constitutive phosphorylation results in a nearly constitutively active form of KlCat8p, while a serine-to-alanine mutation has the reverse effect. Furthermore, it is shown that KlCat8p phosphorylation depends on KlSNF1. The Snf1-Cat8 connection is evolutionarily conserved: mutation of corresponding serine 562 of ScCat8p gave similar results in S. cerevisiae. The enhanced capacity of ScCat8S562E to suppress the phenotype caused by snf1 strengthens the hypothesis of direct phosphorylation of Cat8p by Snf1p. Unlike that of S. cerevisiae ScCAT8, KlCAT8 transcription is not carbon source regulated, illustrating the prominent role of posttranscriptional regulation of Cat8p in K. lactis

    Restricted sugar uptake by sugar-induced internalization of the yeast lactose/galactose permease Lac12

    No full text
    Kluyveromyces lactis Lac12 permease mediates lactose and low-affinity galactose transports. In this study we investigated the effects of carbon sources on internalization of Lac12 using a LAC12–GFP fusion construct. When galactose- or lactose-grown cells are shifted to a fresh sugar medium, Lac12–GFP is removed from the plasma membrane and is localized intracellularly. Surprisingly, either galactose or lactose in the new media caused the internalization, and cells responded differently to these two sugars. Our results reveal that this process is dependent on sugar species and also sugar concentration. Lac12–GFP internalization causes reduction of [C14]lactose uptake rates and also occurs in a Klsnf1 mutant strain; it is therefore independent of KlSnf1 activity. We suggest that glucose-6-phosphate is the intracellular signal, as internalization was induced by 2-deoxyglucose, and inhibition of phosphoglucomutase by lithium prevented galactose- but not lactose- or glucose-induced internalization. Lac12–GFP internalization was not triggered by 6-deoxyglucose, and was irreversible in the absence of protein synthesis
    corecore