216 research outputs found

    The New White Flight

    Get PDF
    White charter school enclaves—defined as charter schools located in school districts that are thirty percent or less white, but that enroll a student body that is fifty percent or greater white— are emerging across the country. The emergence of white charter school enclaves is the result of a sobering and ugly truth: when given a choice, white parents as a collective tend to choose racially segregated, predominately white schools. Empirical research supports this claim. Empirical research also demonstrates that white parents as a collective will make that choice even when presented with the option of a more racially diverse school that is of good academic quality. Despite the connection between collective white parental choice and school segregation, greater choice continues to be injected into the school assignment process. School choice assignment policies, particularly charter schools, are proliferating at a substantial rate. As a result, parental choice rather than systemic design is creating new patterns of racial segregation and inequality in public schools. Yet the Supreme Court’s school desegregation jurisprudence insulates racial segregation in schools ostensibly caused by parental choice rather than systemic design from regulation. Consequently, the new patterns of racial segregation in public schools caused by collective white parental choice largely escapes regulation by courts. This article argues that the time has come to reconsider the legal and normative viability of regulating racial segregation in public schools caused by collective white parental choice. The article makes two important contributions to the legal literature on school desegregation. First, using white charter school enclaves as an example, it documents the ways in which school choice policies are being used to allow whites as a collective to satisfy their preference for segregated predominately white schools. Second, the article sets forth both constitutional and normative arguments for regulating the private choices that result in stark racial segregation patterns in public schools

    The Angstrom Project Alert System: real-time detection of extragalactic microlensing

    Get PDF
    The Angstrom Project is undertaking an optical survey of stellar microlensing events across the bulge region of the Andromeda Galaxy (M31) using a distributed network of two-meter class telescopes. The Angstrom Project Alert System (APAS) has been developed to identify in real time candidate microlensing and transient events using data from the Liverpool and Faulkes North robotic telescopes. This is the first time that real-time microlensing discovery has been attempted outside of the Milky Way and its satellite galaxies. The APAS is designed to enable follow-up studies of M31 microlensing systems, including searches for gas giant planets in M31. Here we describe the APAS and we present a few example light curves obtained during its commissioning phase which clearly demonstrate its real-time capability to identify microlensing candidates as well as other transient sources.Comment: 4 pages, submitted to ApJ Letter

    Some features of using the keyboard shortcuts when preparing documents with Tajik font in the Microsoft Word

    Full text link
    В работе было приведено теоретическое и практическое обоснование использования сочетания клавиш, правильного выбора данного сочетания клавиш для максимального облегчения работы пользователя персонального компьютера. Представляется примерный вариант корректировки текста с помощью команды «Заменить» при разной гарнитуре шрифта в программе Microsoft Word.The work resulted in theoretical and practical substantiation of using a combination of keys, the correct choice of this combination of keys for maximum simplification of the work of the user of the personal computer. An approximate version of the text correction is provided with the "Replace" command under a different typeface in Microsoft Word

    A reconfigurable real-time compressive-sampling camera for biological applications

    Get PDF
    Many applications in biology, such as long-term functional imaging of neural and cardiac systems, require continuous high-speed imaging. This is typically not possible, however, using commercially available systems. The frame rate and the recording time of high-speed cameras are limited by the digitization rate and the capacity of on-camera memory. Further restrictions are often imposed by the limited bandwidth of the data link to the host computer. Even if the system bandwidth is not a limiting factor, continuous high-speed acquisition results in very large volumes of data that are difficult to handle, particularly when real-time analysis is required. In response to this issue many cameras allow a predetermined, rectangular region of interest (ROI) to be sampled, however this approach lacks flexibility and is blind to the image region outside of the ROI. We have addressed this problem by building a camera system using a randomly-addressable CMOS sensor. The camera has a low bandwidth, but is able to capture continuous high-speed images of an arbitrarily defined ROI, using most of the available bandwidth, while simultaneously acquiring low-speed, full frame images using the remaining bandwidth. In addition, the camera is able to use the full-frame information to recalculate the positions of targets and update the high-speed ROIs without interrupting acquisition. In this way the camera is capable of imaging moving targets at high-speed while simultaneously imaging the whole frame at a lower speed. We have used this camera system to monitor the heartbeat and blood cell flow of a water flea (Daphnia) at frame rates in excess of 1500 fps
    corecore