67 research outputs found

    Adalimumabin ja etanerseptin hinnat laskivat Viroa hitaammin

    Get PDF
    Lähtökohdat : Biosimilaarien odotetaan tuovan hintakilpailua ja säästöjä biologisten lääkkeiden kustannuksiin. Eri maat kannustavat kilpailua eri tavoin. Menetelmät : Kuvaamme adalimumabin ja etanerseptin korvauskäytännöt 2018–2022. Selvitimme lääkkeiden hintakehityksen Suomessa ja Virossa. Arvioimme Kelasto-tietokannan perusteella, miten kustannukset olisivat voineet kehittyä Suomessa Viron kaltaisella menettelyllä. Tulokset : Suomen hinnoittelusäännön mukaan ensimmäisen biosimilaarin tukkuhinta voi olla korkeintaan 70 % alkuperäisvalmisteen tukkuhinnasta, jotta se voidaan hyväksyä korvausjärjestelmään. Hinnat laskivat hitaasti, ja valmisteiden välille syntyi merkittäviä hintaeroja. Virossa aloitettiin vuonna 2019 tarjouskilpailun luonteinen viitehinnoittelu. Hinnat laskivat kaikilla lääkettä käyttäneillä ja nopeammin kuin Suomessa. Jos Suomessa olisi saavutettu yhtä nopea hinnan lasku, vuosina 2018–2021 olisi säästynyt arviolta 183 miljoonaa euroa. Potilaan maksuosuus oli pienempi Virossa kuin Suomessa. Päätelmät : Ennen biologisten lääkkeiden apteekkivaihtoa voimassa ollut käytäntö johti Suomessa adalimumabi- ja etanerseptivalmisteiden ylihintaan.Peer reviewe

    Urban wetland parks in Finland: improving water quality and creating endangered habitats

    Get PDF
    Urbanization changes water balance, degrades water quality and disrupts habitats. Wetlands offer storm water volume and flow control, water pollution mitigation, and rich land–water interphase habitats. In the present case study, urban wetlands were designed and implemented to provide multiple functions, including water quality improvement and the establishment of critically endangered clay stream habitat, along a revived urban stream within the Baltic Sea watershed in Southern Finland. The primary water quality concern in the recipient lake is algal bloom controlling and clay particle-carried phosphorus. Wetlands were monitored for functioning over five calendar years. At a wetland monitored for 5 years, herbaceous vegetation was well self-established in the second year, and reached 102 species, of which 97% were native, in the fifth growing season. Successful breeding of amphibians and water birds occurred right after construction. Continuous water quality monitoring over the fourth year at this wetland, with 0.1% area of its watershed, revealed seasonal and event-based differences: for total phosphorus, an annual 10% average with lower removal rates outside, and up to 71% event reductions during the growing season, while highest load reductions occurred during heavy rain and snowmelt events outside the growing season. The created wetlands provided critical habitat and beneficial functions and thus compensated partly for urbanization.Peer reviewe

    Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome

    Get PDF
    Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6–7% over the current levels with a 1 °C increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems. © 2017 Springer-Verlag GmbH GermanyAdditional co-authors: Katherine S. Christie, Yulia V. Denisova, Dagmar Egelkraut, Dorothee Ehrich, LeeAnn Fishback, Bruce C. Forbes, Maite Gartzia, Paul Grogan, Martin Hallinger, Monique M. P. D. Heijmans, David S. Hik, Annika Hofgaard, Milena Holmgren, Toke T. Høye, Diane C. Huebner, Ingibjorg Svala Jonsdottir, Elina Kaarlejarvi, Timo Kumpula, Cynthia Y. M. J. G. Lange, Jelena Lange, Esther Levesque, Juul Limpens, Marc Macias-Fauria, Isla Myers-Smith, Erik J. van Nieukerken, Signe Normand, Eric S. Post, Niels Martin Schmidt, Judith Sitters, Anna Skoracka, Alexander Sokolov, Natalya Sokolova, James D. M. Speed, Lorna E. Street, Maja K. Sundqvist, Otso Suominen, Nikita Tananaev, Jean-Pierre Tremblay, Christine Urbanowicz, Sergey A. Uvarov, David Watts, Martin Wilmking, Heike H. Zimmermann, Vitali Zverev, Mikhail V. Kozlo

    Neuroimaging findings in neurodevelopmental copy number variants: identifying molecular pathways to convergent phenotypes

    Get PDF
    Genomic copy number variants (CNVs) are associated with a high risk of neurodevelopmental disorders. A growing body of genetic studies suggests that these high-risk genetic variants converge in common molecular pathways, and that common pathways also exist across clinically distinct disorders, such as schizophrenia and autism spectrum disorder. A key question is how common molecular mechanisms converge into similar clinical outcomes. We review emerging evidence for convergent cognitive and brain phenotypes across distinct CNVs. Multiple CNVs were shown to have similar effects on core sensory, cognitive and motor traits. Emerging data from multi-site neuroimaging studies have provided valuable information on how these CNVs affect brain structure and function. However, most of these studies examined one CNV at a time, making it difficult to fully understand the proportion of shared brain effects. Recent studies have started to combine neuroimaging data from multiple CNV carriers and identified similar brain effects across CNVs. Some early findings also support convergence in CNV animal models. Systems biology, through integration of multi-level data, provides new insights into convergent molecular mechanisms across genetic risk variants (e.g., altered synaptic activity). However, the link between such key molecular mechanisms and convergent psychiatric phenotypes is still unknown. In order to better understand this link, we need new approaches that integrate human molecular data with neuroimaging, cognitive, and animal models data, while taking into account critical developmental timepoints. Identifying risk mechanisms across genetic loci can elucidate the pathophysiology of neurodevelopmental disorders and identify new therapeutic targets for cross-disorder applications

    Reciprocal white matter changes associated with copy number variation at 15q11.2 BP1-BP2: A diffusion tensor imaging study

    Get PDF
    Background The 15q11.2 BP1-BP2 cytogenetic region has been associated with learning and motor delays, autism, and schizophrenia. This region includes a gene that codes for the cytoplasmic FMR1 interacting protein 1 (CYFIP1). The CYFIP1 protein is involved in actin cytoskeletal dynamics and interacts with the fragile X mental retardation protein. Absence of fragile X mental retardation protein causes fragile X syndrome. Because abnormal white matter microstructure has been reported in both fragile X syndrome and psychiatric disorders, we looked at the impact of 15q11.2 BP1-BP2 dosage on white matter microstructure. Methods Combining a brain-wide voxel-based approach and a regional-based analysis, we analyzed diffusion tensor imaging data from healthy individuals with the deletion (n = 30), healthy individuals with the reciprocal duplication (n = 27), and IQ-matched control subjects with no large copy number variants (n = 19), recruited from a large genotyped population sample. Results We found global mirror effects (deletion > control > duplication) on fractional anisotropy. The deletion group showed widespread increased fractional anisotropy when compared with duplication. Regional analyses revealed a greater effect size in the posterior limb of the internal capsule and a tendency for decreased fractional anisotropy in duplication. Conclusions These results show a reciprocal effect of 15q11.2 BP1-BP2 on white matter microstructure, suggesting that reciprocal chromosomal imbalances may lead to opposite changes in brain structure. Findings in the deletion overlap with previous white matter differences reported in fragile X syndrome patients, suggesting common pathogenic mechanisms derived from disruptions of cytoplasmic CYFIP1-fragile X mental retardation protein complexes. Our data begin to identify specific components of the 15q11.2 BP1-BP2 phenotype and neurobiological mechanisms of potential relevance to the increased risk for disorder

    The viral protein corona directs viral pathogenesis and amyloid aggregation

    Get PDF
    Artificial nanoparticles accumulate a protein corona layer in biological fluids, which significantly influences their bioactivity. As nanosized obligate intracellular parasites, viruses share many biophysical properties with artificial nanoparticles in extracellular environments and here we show that respiratory syncytial virus (RSV) and herpes simplex virus type 1 (HSV-1) accumulate a rich and distinctive protein corona in different biological fluids. Moreover, we show that corona pre-coating differentially affects viral infectivity and immune cell activation. In addition, we demonstrate that viruses bind amyloidogenic peptides in their corona and catalyze amyloid formation via surface-assisted heterogeneous nucleation. Importantly, we show that HSV-1 catalyzes the aggregation of the amyloid beta-peptide (A beta(42)), a major constituent of amyloid plaques in Alzheimer's disease, in vitro and in animal models. Our results highlight the viral protein corona as an acquired structural layer that is critical for viral-host interactions and illustrate a mechanistic convergence between viral and amyloid pathologies.Peer reviewe
    • …
    corecore