230 research outputs found

    One Health proof of concept: Bringing a transdisciplinary approach to surveillance for zoonotic viruses at the human-wild animal interface.

    Get PDF
    As the world continues to react and respond inefficiently to emerging infectious diseases, such as Middle Eastern Respiratory Syndrome and the Ebola and Zika viruses, a growing transdisciplinary community has called for a more proactive and holistic approach to prevention and preparedness - One Health. Such an approach presents important opportunities to reduce the impact of disease emergence events and also to mitigate future emergence through improved cross-sectoral coordination. In an attempt to provide proof of concept of the utility of the One Health approach, the US Agency for International Development's PREDICT project consortium designed and implemented a targeted, risk-based surveillance strategy based not on humans as sentinels of disease but on detecting viruses early, at their source, where intervention strategies can be implemented before there is opportunity for spillover and spread in people or food animals. Here, we share One Health approaches used by consortium members to illustrate the potential for successful One Health outcomes that can be achieved through collaborative, transdisciplinary partnerships. PREDICT's collaboration with partners around the world on strengthening local capacity to detect hundreds of viruses in wild animals, coupled with a series of cutting-edge virological and analytical activities, have significantly improved our baseline knowledge on the zoonotic pool of viruses and the risk of exposure to people. Further testament to the success of the project's One Health approach and the work of its team of dedicated One Health professionals are the resulting 90 peer-reviewed, scientific publications in under 5 years that improve our understanding of zoonoses and the factors influencing their emergence. The findings are assisting in global health improvements, including surveillance science, diagnostic technologies, understanding of viral evolution, and ecological driver identification. Through its One Health leadership and multi-disciplinary partnerships, PREDICT has forged new networks of professionals from the human, animal, and environmental health sectors to promote global health, improving our understanding of viral disease spillover from wildlife and implementing strategies for preventing and controlling emerging disease threats

    Implications of squirrelpox virus for successful red squirrel translocations within mainland UK

    Get PDF
    Remnant red squirrel populations in the UK mainland are threatened by squirrelpox viral disease and the reservoir of the squirrelpox virus, the invasive grey squirrel, is expanding its range. Until this threat can be effectively mitigated, there is a high risk from disease outbreaks, following proposed conservation translocation of red squirrels

    The Impact of Ecological Conditions on the Prevalence of Malaria Among Orangutans

    Get PDF
    Contemporary human land use patterns have led to changes in orangutan ecology, such as the loss of habitat. One management response to orangutan habitat loss is to relocate orangutans into regions of intact, protected habitat. Young orangutans are also kept as pets and have at times been a valuable commodity in the illegal pet trade. In response to this situation, government authorities have taken law enforcement action by removing these animals from private hands and attempted to rehabilitate and release these orangutans. In relocating free-ranging orangutans, the animals are typically held isolated or with family members for ,48 h and released, but during the course of rehabilitation, orangutans often spend some time in captive and semicaptive group settings. Captive/semicaptive groups have a higher density of orangutans than wild populations, and differ in other ways that may influence susceptibility to infectious disease. In order to determine the impact of these ecological settings on malaria, the prevalence of malaria was compared between 31 captive and semicaptive orangutans in a rehabilitation program at the Sepilok Orangutan Rehabilitation Centre and 43 wild orangutans being moved in a translocation project. The prevalence of malaria parasites, as determined by blood smear and Plasmodium genus-specific nestedpolymerase chain reaction, was greater in the captive/semicaptive population (29 of 31) than in the wild population (5 of 43) even when accounting for age bias. This discrepancy is discussed in the context of population changes associated with the management of orangutans in captive/semicaptive setting, in particular a 50-fold increase in orangutan population density. The results provide an example of how an ecological change can influence pathogen prevalence

    Cooperative secretions facilitate host range expansion in bacteria

    Get PDF
    The majority of emergent human pathogens are zoonotic in origin, that is, they can transmit to humans from other animals. Understanding the factors underlying the evolution of pathogen host range is therefore of critical importance in protecting human health. There are two main evolutionary routes to generalism: organisms can tolerate multiple environments or they can modify their environments to forms to which they are adapted. Here we use a combination of theory and a phylogenetic comparative analysis of 191 pathogenic bacterial species to show that bacteria use cooperative secretions that modify their environment to extend their host range and infect multiple host species. Our results suggest that cooperative secretions are key determinants of host range in bacteria, and that monitoring for the acquisition of secreted proteins by horizontal gene transfer can help predict emerging zoonoses

    Global Disease Outbreaks Associated with the 2015–2016 El Niño Event

    Get PDF
    Interannual climate variability patterns associated with the El Niño-Southern Oscillation phenomenon result in climate and environmental anomaly conditions in specific regions worldwide that directly favor outbreaks and/or amplification of variety of diseases of public health concern including chikungunya, hantavirus, Rift Valley fever, cholera, plague, and Zika. We analyzed patterns of some disease outbreaks during the strong 2015–2016 El Niño event in relation to climate anomalies derived from satellite measurements. Disease outbreaks in multiple El Niño-connected regions worldwide (including Southeast Asia, Tanzania, western US, and Brazil) followed shifts in rainfall, temperature, and vegetation in which both drought and flooding occurred in excess (14–81% precipitation departures from normal). These shifts favored ecological conditions appropriate for pathogens and their vectors to emerge and propagate clusters of diseases activity in these regions. Our analysis indicates that intensity of disease activity in some ENSO-teleconnected regions were approximately 2.5–28% higher during years with El Niño events than those without. Plague in Colorado and New Mexico as well as cholera in Tanzania were significantly associated with above normal rainfall (p \u3c 0.05); while dengue in Brazil and southeast Asia were significantly associated with above normal land surface temperature (p \u3c 0.05). Routine and ongoing global satellite monitoring of key climate variable anomalies calibrated to specific regions could identify regions at risk for emergence and propagation of disease vectors. Such information can provide sufficient lead-time for outbreak prevention and potentially reduce the burden and spread of ecologically coupled diseases

    Adenovirus and Herpesvirus Diversity in Free Ranging Great Apes in the Sangha Region of the Republic of Congo

    Get PDF
    Infectious diseases have caused die-offs in both free-ranging gorillas and chimpanzees. Understanding pathogen diversity and disease ecology is therefore critical for conserving these endangered animals. To determine viral diversity in free-ranging, non-habituated gorillas and chimpanzees in the Republic of Congo, genetic testing was performed on great-ape fecal samples collected near Odzala-Kokoua National Park. Samples were analyzed to determine ape species, identify individuals in the population, and to test for the presence of herpesviruses, adenoviruses, poxviruses, bocaviruses, flaviviruses, paramyxoviruses, coronaviruses, filoviruses, and simian immunodeficiency virus (SIV). We identified 19 DNA viruses representing two viral families, Herpesviridae and Adenoviridae, of which three herpesviruses had not been previously described. Co-detections of multiple herpesviruses and/or adenoviruses were present in both gorillas and chimpanzees. Cytomegalovirus (CMV) and lymphocryptovirus (LCV) were found primarily in the context of co-association with each other and adenoviruses. Using viral discovery curves for herpesviruses and adenoviruses, the total viral richness in the sample population of gorillas and chimpanzees was estimated to be a minimum of 23 viruses, corresponding to a detection rate of 83%. These findings represent the first description of DNA viral diversity in feces from free-ranging gorillas and chimpanzees in or near the Odzala-Kokoua National Park and form a basis for understanding the types of viruses circulating among great apes in this region

    Hazard Analysis of Critical Control Points Assessment as a Tool to Respond to Emerging Infectious Disease Outbreaks

    Get PDF
    Highly pathogenic avian influenza virus (HPAI) strain H5N1 has had direct and indirect economic impacts arising from direct mortality and control programmes in over 50 countries reporting poultry outbreaks. HPAI H5N1 is now reported as the most widespread and expensive zoonotic disease recorded and continues to pose a global health threat. The aim of this research was to assess the potential of utilising Hazard Analysis of Critical Control Points (HACCP) assessments in providing a framework for a rapid response to emerging infectious disease outbreaks. This novel approach applies a scientific process, widely used in food production systems, to assess risks related to a specific emerging health threat within a known zoonotic disease hotspot. We conducted a HACCP assessment for HPAI viruses within Vietnam’s domestic poultry trade and relate our findings to the existing literature. Our HACCP assessment identified poultry flock isolation, transportation, slaughter, preparation and consumption as critical control points for Vietnam’s domestic poultry trade. Introduction of the preventative measures highlighted through this HACCP evaluation would reduce the risks posed by HPAI viruses and pressure on the national economy. We conclude that this HACCP assessment provides compelling evidence for the future potential that HACCP analyses could play in initiating a rapid response to emerging infectious diseases

    Global avian influenza surveillance in wild birds: A strategy to capture viral diversity

    Get PDF
    Wild birds play a major role in the evolution, maintenance, and spread of avian influenza viruses. However, surveillance for these viruses in wild birds is sporadic, geographically biased, and often limited to the last outbreak virus. To identify opportunities to optimize wild bird surveillance for understanding viral diversity, we reviewed responses to a World Organisation for Animal Health-administered survey, government reports to this organization, articles on Web of Knowledge, and the Influenza Research Database. At least 119 countries conducted avian influenza virus surveillance in wild birds during 2008-2013, but coordination and standardization was lacking among surveillance efforts, and most focused on limited subsets of influenza viruses. Given high financial and public health burdens of recent avian influenza outbreaks, we call for sustained, cost-effective investments in locations with high avian influenza diversity in wild birds and efforts to promote standardized sampling, testing, and reporting methods, including full-genome sequencing. (Résumé d'auteur
    corecore