849 research outputs found

    A new pathogen transmission mechanism in the ocean: the case of sea otter exposure to the land-parasite Toxoplasma gondii.

    Get PDF
    Toxoplasma gondii is a land-derived parasite that infects humans and marine mammals. Infections are a significant cause of mortality for endangered southern sea otters (Enhydra lutris nereis), but the transmission mechanism is poorly understood. Otter exposure to T. gondii has been linked to the consumption of marine turban snails in kelp (Macrocystis pyrifera) forests. It is unknown how turban snails acquire oocysts, as snails scrape food particles attached to surfaces, whereas T. gondii oocysts enter kelp beds as suspended particles via runoff. We hypothesized that waterborne T. gondii oocysts attach to kelp surfaces when encountering exopolymer substances (EPS) forming the sticky matrix of biofilms on kelp, and thus become available to snails. Results of a dietary composition analysis of field-collected snails and of kelp biofilm indicate that snails graze the dense kelp-biofilm assemblage composed of pennate diatoms and bacteria inserted within the EPS gel-like matrix. To test whether oocysts attach to kelp blades via EPS, we designed a laboratory experiment simulating the kelp forest canopy in tanks spiked with T. gondii surrogate microspheres and controlled for EPS and transparent exopolymer particles (TEP - the particulate form of EPS). On average, 19% and 31% of surrogates were detected attached to kelp surfaces covered with EPS in unfiltered and filtered seawater treatments, respectively. The presence of TEP in the seawater did not increase surrogate attachment. These findings support a novel transport mechanism of T. gondii oocysts: as oocysts enter the kelp forest canopy, a portion adheres to the sticky kelp biofilms. Snails grazing this biofilm encounter oocysts as 'bycatch' and thereby deliver the parasite to sea otters that prey upon snails. This novel mechanism can have health implications beyond T. gondii and otters, as a similar route of pathogen transmission may be implicated with other waterborne pathogens to marine wildlife and humans consuming biofilm-feeding invertebrates

    More people, more cats, more parasites: Human population density and temperature variation predict prevalence of \u3ci\u3eToxoplasma gondii\u3c/i\u3e oocyst shedding in free-ranging domestic and wild felids

    Get PDF
    Toxoplasma gondii is a ubiquitous zoonotic parasite that can infect warm-blooded vertebrates, including humans. Felids, the definitive hosts, drive T. gondii infections by shedding the environmentally resistant stage of the parasite (oocysts) in their feces. Few studies characterize the role of climate and anthropogenic factors in oocyst shedding among free-ranging felids, which are responsible for the majority of environmental contamination. We determined how climate and anthropogenic factors influence oocyst shedding in free-ranging domestic cats and wild felids using generalized linear mixed models. T. gondii oocyst shedding data from 47 studies were systematically reviewed and compiled for domestic cats and six wild felid species, encompassing 256 positives out of 9,635 total fecal samples. Shedding prevalence in domestic cats and wild felids was positively associated with human population density at the sampling location. Larger mean diurnal temperature range was associated with more shedding among domestic cats and warmer temperature in the driest quarter was associated with lower oocyst shedding in wild felids. Increasing human population density and temperature fluctuation can exacerbate environmental contamination with the protozoan parasite T. gondii. Management of free-ranging domestic cats could lower the burden of environmental oocysts due to their large population sizes and affinity with human settlements

    Moving the Library: Bringing Resources to Students (Using a Learning Management System)

    Get PDF
    Students are increasingly finding library resources online due to the explosion in online courses and the use of course management software for all courses, whether fully online, hybrid, or traditional face-to-face courses. Librarians from Union County College (a two-year community college) and Montclair State University (a large research library) discussed the various approaches used to promote and market library services and resources using their institutions’ library management system (LMS). A representative from Gale Cengage presented how Gale is connecting library content to the classroom while helping libraries raise their profile on campus

    Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food

    Get PDF
    Toxoplasma gondii is a zoonotic protozoan parasite that can cause morbidity and mortality in humans, domestic animals, and terrestrial and aquatic wildlife. The environmentally robust oocyst stage of T. gondii is fundamentally critical to the parasite\u27s success, both in terms of its worldwide distribution as well as the extensive range of infected intermediate hosts. Despite the limited definitive host species (domestic and wild felids), infections have been reported on every continent, and in terrestrial as well as aquatic environments. The remarkable resistance of the oocyst wall enables dissemination of T. gondii through watersheds and ecosystems, and long-term persistence in diverse foods such as shellfish and fresh produce. Here, we review the key attributes of oocyst biophysical properties that confer their ability to disseminate and survive in the environment, as well as the epidemiological dynamics of oocyst sources including domestic and wild felids. This manuscript further provides a comprehensive review of the pathways by which T. gondii oocysts can infect animals and people through the environment, including in contaminated foods, water or soil. We conclude by identifying critical control points for reducing risk of exposure to oocysts as well as opportunities for future synergies and new directions for research aimed at reducing the burden of oocyst-borne toxoplasmosis in humans, domestic animals, and wildlife

    Aquatic polymers can drive pathogen transmission in coastal ecosystems.

    Get PDF
    Gelatinous polymers including extracellular polymeric substances (EPSs) are fundamental to biophysical processes in aquatic habitats, including mediating aggregation processes and functioning as the matrix of biofilms. Yet insight into the impact of these sticky molecules on the environmental transmission of pathogens in the ocean is limited. We used the zoonotic parasite Toxoplasma gondii as a model to evaluate polymer-mediated mechanisms that promote transmission of terrestrially derived pathogens to marine fauna and humans. We show that transparent exopolymer particles, a particulate form of EPS, enhance T. gondii association with marine aggregates, material consumed by organisms otherwise unable to access micrometre-sized particles. Adhesion to EPS biofilms on macroalgae also captures T. gondii from the water, enabling uptake of pathogens by invertebrates that feed on kelp surfaces. We demonstrate the acquisition, concentration and retention of T. gondii by kelp-grazing snails, which can transmit T. gondii to threatened California sea otters. Results highlight novel mechanisms whereby aquatic polymers facilitate incorporation of pathogens into food webs via association with particle aggregates and biofilms. Identifying the critical role of invisible polymers in transmission of pathogens in the ocean represents a fundamental advance in understanding and mitigating the health impacts of coastal habitat pollution with contaminated runoff

    Adapting to Climate Change: The Remarkable Decline in the U.S. Temperature-Mortality Relationship over the 20th Century

    Get PDF
    Adaptation is the only strategy that is guaranteed to be part of the world's climate strategy. Using the most comprehensive set of data files ever compiled on mortality and its determinants over the course of the 20th century, this paper makes two primary discoveries. First, we find that the mortality effect of an extremely hot day declined by about 80% between 1900–1959 and 1960–2004. As a consequence, days with temperatures exceeding 90°F were responsible for about 600 premature fatalities annually in the 1960–2004 period, compared to the approximately 3,600 premature fatalities that would have occurred if the temperature-mortality relationship from before 1960 still prevailed. Second, the adoption of residential air conditioning (AC) explains essentially the entire decline in the temperature-mortality relationship. In contrast, increased access to electricity and health care seem not to affect mortality on extremely hot days. Residential AC appears to be both the most promising technology to help poor countries mitigate the temperature related mortality impacts of climate change and, because fossil fuels are the least expensive source of energy, a technology whose proliferation will speed up the rate of climate change

    Adapting the Climate Change: The Remarkable Decline in the U.S. Temperature-Mortality Relationship Over the 20th Century

    Get PDF
    Adaptation is the only strategy that is guaranteed to be part of the world's climate strategy. Using the most comprehensive set of data files ever compiled on mortality and its determinants over the course of the 20th century, this paper makes two primary discoveries. First, we find that the mortality effect of an extremely hot day declined by about 80% between 1900-1959 and 1960-2004. As a consequence, days with temperatures exceeding 90°F were responsible for about 600 premature fatalities annually in the 1960-2004 period, compared to the approximately 3,600 premature fatalities that would have occurred if the temperature-mortality relationship from before 1960 still prevailed. Second, the adoption of residential air conditioning (AC) explains essentially the entire decline in the temperature-mortality relationship. In contrast, increased access to electricity and health care seem not to affect mortality on extremely hot days. Residential AC appears to be both the most promising technology to help poor countries mitigate the temperature related mortality impacts of climate change and, because fossil fuels are the least expensive source of energy, a technology whose proliferation will speed up the rate of climate change
    • …
    corecore