440 research outputs found

    Selective Over-Expression of Endothelin-1 in Endothelial Cells Exacerbates Inner Retinal Edema and Neuronal Death in Ischemic Retina

    Get PDF
    The level of endothelin-1 (ET-1), a potent vasoconstrictor, was associated with retinopathy under ischemia. The effects of endothelial endothelin-1 (ET-1) over-expression in a transgenic mouse model using Tie-1 promoter (TET-1 mice) on pathophysiological changes of retinal ischemia were investigated by intraluminal insertion of a microfilament up to middle cerebral artery (MCA) to transiently block the ophthalmic artery. Two-hour occlusion and twenty-two-hour reperfusion were performed in homozygous (Hm) TET-1 mice and their non-transgenic (NTg) littermates. Presence of pyknotic nuclei in ganglion cell layer (GCL) was investigated in paraffin sections of ipsilateral (ischemic) and contralateral (non-ischemic) retinae, followed by measurement of the thickness of inner retinal layer. Moreover, immunocytochemistry of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS) and aquaporin-4 (AQP4) peptides on retinal sections were performed to study glial cell reactivity, glutamate metabolism and water accumulation, respectively after retinal ischemia. Similar morphology was observed in the contralateral retinae of NTg and Hm TET-1 mice, whereas ipsilateral retina of NTg mice showed slight structural and cellular changes compared with the corresponding contralateral retina. Ipsilateral retinae of Hm TET-1 mice showed more significant changes when compared with ipsilateral retina of NTg mice, including more prominent cell death in GCL characterized by the presence of pyknotic nuclei, elevated GS immunoreactivity in Müller cell bodies and processes, increased AQP-4 immunoreactivity in Müller cell processes, and increased inner retinal thickness. Thus, over-expression of endothelial ET-1 in TET-1 mice may contribute to increased glutamate-induced neurotoxicity on neuronal cells and water accumulation in inner retina leading to edema

    Variceal Hemorrhage and Adverse Liver Outcomes in Patients With Cystic Fibrosis Cirrhosis

    Get PDF
    OBJECTIVES: Cirrhosis occurs in 5% to 10% of cystic fibrosis (CF) patients, often accompanied by portal hypertension. We analyzed 3 adverse liver outcomes, variceal bleeding (VB), liver transplant (LT), and liver-related death (LD), and risk factors for these in CF Foundation Patient Registry subjects with reported cirrhosis. METHODS: We determined 10-year incidence rates for VB, LT, LD, and all-cause mortality (ACM), and examined risk factors using competing risk models and Cox-proportional hazard regression. RESULTS: From 2003 to 2012, 943 participants (41% females, mean age 18.1 years) had newly reported cirrhosis; 24.7% required insulin, 85% had previous pseudomonas. Seventy-three subjects had reported VB: 38 with first VB and new cirrhosis reported simultaneously and 35 with VB after cirrhosis report. Ten-year cumulative VB, LT, and LD rates were 6.6% (95% confidence interval [CI]: 4.0, 9.1%), 9.9% (95% CI: 6.6%, 13.2%), and 6.9% (95% CI: 4.0%, 9.8%), respectively, with an ACM of 39.2% (95% CI: 30.8, 36.6%). ACM was not increased in subjects with VB compared to those without (hazard ratio [HR] 1.10, 95% CI: 0.59, 2.08). CF-related diabetes (HR: 3.141, 95% CI:1.56, 6.34) and VB (HR: 4.837, 95% CI: 2.33, 10.0) were associated with higher LT risk, whereas only worse lung function was associated with increased LD in multivariate analysis. Death rate among subjects with VB was 24% with LT and 20.4% with native liver. CONCLUSIONS: VB is an uncommon complication of CF cirrhosis and can herald the diagnosis, but does not affect ACM. Adverse liver outcomes and ACM are frequent by 10 years after cirrhosis report

    LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA.

    Get PDF
    The DExD/H box RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation associated gene-5 (mda-5) sense viral RNA in the cytoplasm of infected cells and activate signal transduction pathways that trigger the production of type I interferons (IFNs). Laboratory of genetics and physiology 2 (LGP2) is thought to influence IFN production by regulating the activity of RIG-I and mda-5, although its mechanism of action is not known and its function is controversial. Here we show that expression of LGP2 potentiates IFN induction by polyinosinic-polycytidylic acid [poly(I:C)], commonly used as a synthetic mimic of viral dsRNA, and that this is particularly significant at limited levels of the inducer. The observed enhancement is mediated through co-operation with mda-5, which depends upon LGP2 for maximal activation in response to poly(I:C). This co-operation is dependent upon dsRNA binding by LGP2, and the presence of helicase domain IV, both of which are required for LGP2 to interact with mda-5. In contrast, although RIG-I can also be activated by poly(I:C), LGP2 does not have the ability to enhance IFN induction by RIG-I, and instead acts as an inhibitor of RIG-I-dependent poly(I:C) signaling. Thus the level of LGP2 expression is a critical factor in determining the cellular sensitivity to induction by dsRNA, and this may be important for rapid activation of the IFN response at early times post-infection when the levels of inducer are low

    Minimizing the threat of pandemic emergence from avian influenza in poultry systems

    Get PDF
    BACKGROUND: Live-animal markets are a culturally important feature of meat distribution chains in many populations, yet they provide an opportunity for the maintenance and transmission of potentially emergent zoonotic pathogens. The ongoing human outbreak of avian H7N9 in China highlights the need for increased surveillance and control in these live-bird markets (LBMs). DISCUSSION: Closure of retail markets in affected areas rapidly decreased human cases to rare, sporadic occurrence, but little attention has been paid thus far to the role of upstream elements of the poultry distribution chain such as wholesale markets. This could partly explain why transmission in poultry populations has not been eliminated more broadly. We present surveillance data from both wholesale live-bird markets (wLBMs) and rLBMs in Shantou, China (from 2004–2006), and call on disease-dynamic theory to illustrate why closing rLBMs has only minor effects on the overall volume of transmission. We show that the length of time birds stay in rLBMs can severely limit transmission there, but that the system-wide effect may be reduced substantially by high levels of transmission upstream of retail markets. SUMMARY: Management plans that minimize transmission throughout the entire poultry supply chain are essential for minimizing exposure to the public. These include reducing stay-time of birds in markets to 1 day, standardizing poultry supply chains to limit transmission in pre-retail settings, and monitoring strains with epidemiological traits that pose a high risk of emergence. These actions will further limit human exposure to extant viruses and reduce the likelihood of the emergence of novel strains by decreasing the overall volume of transmission

    Derivation and external validation of a clinical prognostic model identifying children at risk of death following presentation for diarrheal care

    Get PDF
    Diarrhea continues to be a leading cause of death for children under-five. Amongst children treated for acute diarrhea, mortality risk remains elevated during and after acute medical management. Identification of those at highest risk would enable better targeting of interventions, but available prognostic tools lack validation. We used clinical and demographic data from the Global Enteric Multicenter Study (GEMS) to build clinical prognostic models (CPMs) to predict death (in-treatment, after discharge, or either) in children aged ≤59 months presenting with moderate-to-severe diarrhea (MSD), in Africa and Asia. We screened variables using random forests, and assessed predictive performance with random forest regression and logistic regression using repeated cross-validation. We used data from the Kilifi Health and Demographic Surveillance System (KHDSS) and Kilifi County Hospital (KCH) in Kenya to externally validate our GEMS-derived CPM. Of 8060 MSD cases, 43 (0.5%) children died in treatment and 122 (1.5% of remaining) died after discharge. MUAC at presentation, respiratory rate, age, temperature, number of days with diarrhea at presentation, number of people living in household, number of children <60 months old living in household, and how much the child had been offered to drink since diarrhea started were predictive of death both in treatment and after discharge. Using a parsimonious 2-variable prediction model, we achieved an area under the ROC curve (AUC) of 0.84 (95% CI: 0.82, 0.86) in the derivation dataset, and an AUC = 0.74 (95% CI 0.71, 0.77) in the external dataset. Our findings suggest it is possible to identify children most likely to die after presenting to care for acute diarrhea. This could represent a novel and cost-effective way to target resources for the prevention of childhood mortality

    Baseline ultrasound and clinical correlates in children with cystic fibrosis.

    Get PDF
    Objective: To investigate the relationship between abdominal ultrasound (US) findings and demographic, historical and clinical features in children with CF. Study design: Children age 3-12 years with CF without known cirrhosis, were enrolled in a prospective, multi-center study of US to predict hepatic fibrosis. Consensus US patterns were assigned by 3 radiologists as normal, heterogeneous, homogeneous, or cirrhosis. Data were derived from direct collection and U.S. or Toronto CF registries. Chi-square or ANOVA were used to compare variables among US groups and between normal and abnormal. Logistic regression was used to study risk factors for having abnormal US. Results: Findings in 719 subjects were normal (n=590, 82.1%), heterogeneous (64, 8.9%), homogeneous (41, 5.7%), and cirrhosis (24, 3.3%). Cirrhosis (p=0.0004), homogeneous (p<0.0001) and heterogeneous (p=0.03) were older than normal. More males were heterogeneous (p=0.001). More heterogeneous (15.0%, p=0.009) and cirrhosis (25.0%, p=0.005) ha

    CXC chemokines exhibit bactericidal activity against multidrug-resistant gram-negative pathogens

    Get PDF
    The continued rise and spread of antimicrobial resistance among bacterial pathogens pose a serious challenge to global health. Countering antimicrobial-resistant pathogens requires a multifaceted effort that includes the discovery of novel therapeutic approaches. Here, we establish the capacity of the human CXC chemokines CXCL9 and CXCL10 to kill multidrug-resistant Gram-negative bacteria, including New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae and colistin-resistant members of the family Enterobacteriaceae that harbor the mobile colistin resistance protein MCR-1 and thus possess phosphoethanolamine-modified lipid A. Colistin-resistant K. pneumoniae isolates affected by genetic mutation of the PmrA/PmrB two-component system, a chromosomally encoded regulator of lipopolysaccharide modification, and containing 4-amino-4-deoxy-l-arabinose-modified lipid A were also found to be susceptible to chemokine-mediated antimicrobial activity. However, loss of PhoP/PhoQ autoregulatory control, caused by disruption of the gene encoding the negative regulator MgrB, limited the bactericidal effects of CXCL9 and CXCL10 in a variable, strain-specific manner. Cumulatively, these findings provide mechanistic insight into chemokine-mediated antimicrobial activity, highlight disparities amongst determinants of colistin resistance, and suggest that chemokine-mediated bactericidal effects merit additional investigation as a therapeutic avenue for treating infections caused by multidrug-resistant pathogens

    Fascin Is Regulated by Slug, Promotes Progression of Pancreatic Cancer in Mice, and Is Associated With Patient Outcomes

    Get PDF
    Background & AimsPancreatic ductal adenocarcinoma (PDAC) is often lethal because it is highly invasive and metastasizes rapidly. The actin-bundling protein fascin has been identified as a biomarker of invasive and advanced PDAC and regulates cell migration and invasion in vitro. We investigated fascin expression and its role in PDAC progression in mice.MethodsWe used KRasG12D p53R172H Pdx1-Cre (KPC) mice to investigate the effects of fascin deficiency on development of pancreatic intraepithelial neoplasia (PanIn), PDAC, and metastasis. We measured levels of fascin in PDAC cell lines and 122 human resected PDAC samples, along with normal ductal and acinar tissues; we associated levels with patient outcomes.ResultsPancreatic ducts and acini from control mice and early-stage PanINs from KPC mice were negative for fascin, but approximately 6% of PanIN3 and 100% of PDAC expressed fascin. Fascin-deficient KRasG12D p53R172H Pdx1-Cre mice had longer survival times, delayed onset of PDAC, and a lower PDAC tumor burdens than KPC mice; loss of fascin did not affect invasion of PDAC into bowel or peritoneum in mice. Levels of slug and fascin correlated in PDAC cells; slug was found to regulate transcription of Fascin along with the epithelial−mesenchymal transition. In PDAC cell lines and cells from mice, fascin concentrated in filopodia and was required for their assembly and turnover. Fascin promoted intercalation of filopodia into mesothelial cell layers and cell invasion. Nearly all human PDAC samples expressed fascin, and higher fascin histoscores correlated with poor outcomes, vascular invasion, and time to recurrence.ConclusionsThe actin-bundling protein fascin is regulated by slug and involved in late-stage PanIN and PDAC formation in mice. Fascin appears to promote formation of filopodia and invasive activities of PDAC cells. Its levels in human PDAC correlate with outcomes and time to recurrence, indicating it might be a marker or therapeutic target for pancreatic cancer
    corecore