9 research outputs found

    HIV non-B subtype distribution: emerging trends and risk factors for imported and local infections newly diagnosed in South Australia

    Get PDF
    Monitoring HIV subtype distribution is important for understanding transmission dynamics. Subtype B has historically been dominant in Australia, but in recent years new clades have appeared. Since 2000, clade data have been collected as part of HIV surveillance in South Australia. The aim of this study was to evaluate the prevalence of and risk factors for HIV-1 non-B subtypes. The study population was composed of newly diagnosed, genotyped HIV subjects in South Australia between 2000 and 2010. We analyzed time trends and subtype patterns in this cohort; notification data were aggregated into three time periods (2000–2003, 2004–2006, and 2007–2010). Main outcome measures were number of new non-B infections by year, exposure route, and other demographic characteristics. There were 513 new HIV diagnoses; 425 had information on subtype. The majority (262/425) were in men who have sex with men (MSM), predominantly subtype B and acquired in Australia. Infections acquired in Australia decreased from 77% (2000–2003) to 64% (2007–2010) ( p = 0.007) and correspondingly the proportion of subtype B declined from 85% to 68% ( p = 0.002). Non-B infections were predominantly (83%) heterosexual contacts, mostly acquired overseas (74%). The majority (68%) of non-B patients were born outside of Australia. There was a non-significant increase from 1.6% to 4.2% in the proportion of locally transmitted non-B cases (p = 0.3). Three non-B subtypes and two circulating recombinant forms (CRFs) were identified: CRF_AE (n = 41), C (n = 36), CRF_AG (n = 13), A (n = 9), and D (n = 2). There has been a substantial increase over the past decade in diagnosed non-B infections, primarily through cases acquired overseas

    Differential In Vitro Effects of Intravenous versus Oral Formulations of Silibinin on the HCV Life Cycle and Inflammation

    Get PDF
    Silymarin prevents liver disease in many experimental rodent models, and is the most popular botanical medicine consumed by patients with hepatitis C. Silibinin is a major component of silymarin, consisting of the flavonolignans silybin A and silybin B, which are insoluble in aqueous solution. A chemically modified and soluble version of silibinin, SIL, has been shown to potently reduce hepatitis C virus (HCV) RNA levels in vivo when administered intravenously. Silymarin and silibinin inhibit HCV infection in cell culture by targeting multiple steps in the virus lifecycle. We tested the hepatoprotective profiles of SIL and silibinin in assays that measure antiviral and anti-inflammatory functions. Both mixtures inhibited fusion of HCV pseudoparticles (HCVpp) with fluorescent liposomes in a dose-dependent fashion. SIL inhibited 5 clinical genotype 1b isolates of NS5B RNA dependent RNA polymerase (RdRp) activity better than silibinin, with IC50 values of 40–85 µM. The enhanced activity of SIL may have been in part due to inhibition of NS5B binding to RNA templates. However, inhibition of the RdRps by both mixtures plateaued at 43–73%, suggesting that the products are poor overall inhibitors of RdRp. Silibinin did not inhibit HCV replication in subgenomic genotype 1b or 2a replicon cell lines, but it did inhibit JFH-1 infection. In contrast, SIL inhibited 1b but not 2a subgenomic replicons and also inhibited JFH-1 infection. Both mixtures inhibited production of progeny virus particles. Silibinin but not SIL inhibited NF-κB- and IFN-B-dependent transcription in Huh7 cells. However, both mixtures inhibited T cell proliferation to similar degrees. These data underscore the differences and similarities between the intravenous and oral formulations of silibinin, which could influence the clinical effects of this mixture on patients with chronic liver diseases

    The study design and methodology for the ARCHER study - adolescent rural cohort study of hormones, health, education, environments and relationships

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adolescence is characterized by marked psychosocial, behavioural and biological changes and represents a critical life transition through which adult health and well-being are established. Substantial research confirms the role of psycho-social and environmental influences on this transition, but objective research examining the role of puberty hormones, testosterone in males and oestradiol in females (as biomarkers of puberty) on adolescent events is lacking. Neither has the tempo of puberty, the time from onset to completion of puberty within an individual been studied, nor the interaction between age of onset and tempo. This study has been designed to provide evidence on the relationship between reproductive hormones and the tempo of their rise to adult levels, and adolescent behaviour, health and wellbeing.</p> <p>Methods/Design</p> <p>The ARCHER study is a multidisciplinary, prospective, longitudinal cohort study in 400 adolescents to be conducted in two centres in regional Australia in the State of New South Wales. The overall aim is to determine how changes over time in puberty hormones independently affect the study endpoints which describe universal and risk behaviours, mental health and physical status in adolescents. Recruitment will commence in school grades 5, 6 and 7 (10–12 years of age). Data collection includes participant and parent questionnaires, anthropometry, blood and urine collection and geocoding. Data analysis will include testing the reliability and validity of the chosen measures of puberty for subsequent statistical modeling to assess the impact over time of tempo and onset of puberty (and their interaction) and mean-level repeated measures analyses to explore for significant upward and downward shifts on target outcomes as a function of main effects.</p> <p>Discussion</p> <p>The strengths of this study include enrollment starting in the earliest stages of puberty, the use of frequent urine samples in addition to annual blood samples to measure puberty hormones, and the simultaneous use of parental questionnaires.</p

    Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis.

    Get PDF
    BACKGROUND: Rare genetic variants cause pulmonary arterial hypertension, but the contribution of common genetic variation to disease risk and natural history is poorly characterised. We tested for genome-wide association for pulmonary arterial hypertension in large international cohorts and assessed the contribution of associated regions to outcomes. METHODS: We did two separate genome-wide association studies (GWAS) and a meta-analysis of pulmonary arterial hypertension. These GWAS used data from four international case-control studies across 11 744 individuals with European ancestry (including 2085 patients). One GWAS used genotypes from 5895 whole-genome sequences and the other GWAS used genotyping array data from an additional 5849 individuals. Cross-validation of loci reaching genome-wide significance was sought by meta-analysis. Conditional analysis corrected for the most significant variants at each locus was used to resolve signals for multiple associations. We functionally annotated associated variants and tested associations with duration of survival. All-cause mortality was the primary endpoint in survival analyses. FINDINGS: A locus near SOX17 (rs10103692, odds ratio 1·80 [95% CI 1·55-2·08], p=5·13 × 10-15) and a second locus in HLA-DPA1 and HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 here; rs2856830, 1·56 [1·42-1·71], p=7·65 × 10-20) within the class II MHC region were associated with pulmonary arterial hypertension. The SOX17 locus had two independent signals associated with pulmonary arterial hypertension (rs13266183, 1·36 [1·25-1·48], p=1·69 × 10-12; and rs10103692). Functional and epigenomic data indicate that the risk variants near SOX17 alter gene regulation via an enhancer active in endothelial cells. Pulmonary arterial hypertension risk variants determined haplotype-specific enhancer activity, and CRISPR-mediated inhibition of the enhancer reduced SOX17 expression. The HLA-DPA1/DPB1 rs2856830 genotype was strongly associated with survival. Median survival from diagnosis in patients with pulmonary arterial hypertension with the C/C homozygous genotype was double (13·50 years [95% CI 12·07 to >13·50]) that of those with the T/T genotype (6·97 years [6·02-8·05]), despite similar baseline disease severity. INTERPRETATION: This is the first study to report that common genetic variation at loci in an enhancer near SOX17 and in HLA-DPA1/DPB1 is associated with pulmonary arterial hypertension. Impairment of SOX17 function might be more common in pulmonary arterial hypertension than suggested by rare mutations in SOX17. Further studies are needed to confirm the association between HLA typing or rs2856830 genotyping and survival, and to determine whether HLA typing or rs2856830 genotyping improves risk stratification in clinical practice or trials. FUNDING: UK NIHR, BHF, UK MRC, Dinosaur Trust, NIH/NHLBI, ERS, EMBO, Wellcome Trust, EU, AHA, ACClinPharm, Netherlands CVRI, Dutch Heart Foundation, Dutch Federation of UMC, Netherlands OHRD and RNAS, German DFG, German BMBF, APH Paris, INSERM, Université Paris-Sud, and French ANR

    Proceedings Of The 23Rd Paediatric Rheumatology European Society Congress: Part Two

    No full text
    PubMe
    corecore