119 research outputs found

    Electrochemical simulation of Solid Oxide Fuel Cell electrodes: an integrated approach to address the microstructure-performance correlation

    Get PDF
    Understanding the complex interplay between electrode microstructure and electrochemical performance is one of the key aspects for the optimization of Solid Oxide Fuel Cells (SOFC). Physically-based modelling, at different levels of sophistication, can provide a valuable insight in order to help the interpretation of experimental data and provide design indications to improve electrode stability and performance. In this contribution we summarize the different modelling approaches used in our group, ranging from physically-based equivalent circuits, continuum conservation models and 3D models solved within the reconstructed electrode microstructure. When necessary, these models are coupled with percolation theory, packing algorithms and tomographic techniques. Special focus is given to the application of the models to interpret impedance spectra and their thorough validation under different conditions. Examples include the application of the models to electrodes with different microstructures, the study of the degradation mechanisms of Ni-infiltrated anodes as well as impedance simulations in real microstructures (Figure 1). Results reveal that coupling physically-based modelling, impedance spectroscopy and 3D tomography is a promising approach to gain a fundamental understanding of the phenomena occurring at different length scales in SOFC electrodes, allowing for interpreting and planning experiments as well as to design more stable and more efficient electrodes

    A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    Get PDF
    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials

    A study of general practitioners' perspectives on electronic medical records systems in NHS Scotland

    Get PDF
    <b>Background</b> Primary care doctors in NHSScotland have been using electronic medical records within their practices routinely for many years. The Scottish Health Executive eHealth strategy (2008-2011) has recently brought radical changes to the primary care computing landscape in Scotland: an information system (GPASS) which was provided free-of-charge by NHSScotland to a majority of GP practices has now been replaced by systems provided by two approved commercial providers. The transition to new electronic medical records had to be completed nationally across all health-boards by March 2012. <p></p><b> Methods</b> We carried out 25 in-depth semi-structured interviews with primary care doctors to elucidate GPs' perspectives on their practice information systems and collect more general information on management processes in the patient surgical pathway in NHSScotland. We undertook a thematic analysis of interviewees' responses, using Normalisation Process Theory as the underpinning conceptual framework. <p></p> <b>Results</b> The majority of GPs' interviewed considered that electronic medical records are an integral and essential element of their work during the consultation, playing a key role in facilitating integrated and continuity of care for patients and making clinical information more accessible. However, GPs expressed a number of reservations about various system functionalities - for example: in relation to usability, system navigation and information visualisation. <b>Conclusion </b>Our study highlights that while electronic information systems are perceived as having important benefits, there remains substantial scope to improve GPs' interaction and overall satisfaction with these systems. Iterative user-centred improvements combined with additional training in the use of technology would promote an increased understanding, familiarity and command of the range of functionalities of electronic medical records among primary care doctors

    Phase Separation of Rigid-Rod Suspensions in Shear Flow

    Full text link
    We analyze the behavior of a suspension of rigid rod-like particles in shear flow using a modified version of the Doi model, and construct diagrams for phase coexistence under conditions of constant imposed stress and constant imposed strain rate, among paranematic, flow-aligning nematic, and log-rolling nematic states. We calculate the effective constitutive relations that would be measured through the regime of phase separation into shear bands. We calculate phase coexistence by examining the stability of interfacial steady states and find a wide range of possible ``phase'' behaviors.Comment: 23 pages 19 figures, revised version to be published in Physical Review

    Anomalous ion diffusion within skeletal muscle transverse tubule networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Skeletal muscle fibres contain transverse tubular (t-tubule) networks that allow electrical signals to rapidly propagate into the fibre. These electrical signals are generated by the transport of ions across the t-tubule membranes and this can result in significant changes in ion concentrations within the t-tubules during muscle excitation. During periods of repeated high-frequency activation of skeletal muscle the t-tubule K<sup>+ </sup>concentration is believed to increase significantly and diffusive K<sup>+ </sup>transport from the t-tubules into the interstitial space provides a mechanism for alleviating muscle membrane depolarization. However, the tortuous nature of the highly branched space-filling t-tubule network impedes the diffusion of material through the network. The effective diffusion coefficient for ions in the t-tubules has been measured to be approximately five times lower than in free solution, which is significantly different from existing theoretical values of the effective diffusion coefficient that range from 2–3 times lower than in free solution. To resolve this discrepancy, in this paper we study the process of diffusion within electron microscope scanned sections of the skeletal muscle t-tubule network using mathematical modelling and computer simulation techniques. Our model includes t-tubule geometry, tautness, hydrodynamic and non-planar network factors.</p> <p>Results</p> <p>Using our model we found that the t-tubule network geometry reduced the K<sup>+ </sup>diffusion coefficient to 19–27% of its value in free solution, which is consistent with the experimentally observed value of 21% and is significantly smaller than existing theoretical values that range from 32–50%. We also found that diffusion in the t-tubules is anomalous for skeletal muscle fibres with a diameter of less than approximately 10–20 μm as a result of obstructed diffusion. We also observed that the [K<sup>+</sup>] within the interior of the t-tubule network during high-frequency activation is greater for fibres with a larger diameter. Smaller skeletal muscle fibres are therefore more resistant to membrane depolarization. Because the t-tubule network is anisotropic and inhomogeneous, we also found that the [K<sup>+</sup>] distribution generated within the network was irregular for fibres of small diameter.</p> <p>Conclusion</p> <p>Our model explains the measured effective diffusion coefficient for ions in skeletal muscle t-tubules.</p

    Effects of iron-rich intermetallics and grain structure on semisolid tensile properties of Al-Cu 206 cast alloys near solidus temperature

    Get PDF
    The effects of iron-rich intermetallics and grain size on the semisolid tensile properties of Al-Cu 206 cast alloys near the solidus were evaluated in relation to the mush microstructure. Analyses of the stress–displacement curves showed that the damage expanded faster in the mush structure dominated by plate-like β-Fe compared to the mush structure dominated by Chinese script-like α-Fe. While there was no evidence of void formation on the β-Fe intermetallics, they blocked the interdendritic liquid channels and thus hindered liquid flow and feeding during semisolid deformation. In contrast, the interdendritic liquid flows more freely within the mush structure containing α-Fe. The tensile properties of the alloy containing α-Fe are generally higher than those containing β-Fe over the crucial liquid fraction range of ~0.6 to 2.8 pct, indicating that the latter alloy may be more susceptible to stress-related casting defects such as hot tearing. A comparison of the semisolid tensile properties of the alloy containing α-Fe with different grain sizes showed that the maximum stress and elongation of the alloy with finer grains were moderately higher for the liquid fractions of ~2.2 to 3.6 pct. The application of semisolid tensile properties for the evaluation of the hot tearing susceptibility of experimental alloys is discussed

    4D synchrotron X-ray tomographic quantification of the transition from cellular to dendrite growth during directional solidification

    Get PDF
    Solidification morphology directly impacts the mechanical properties of materials; hence many models of the morphological evolution of dendritic structures have been formulated. However, there is a paucity of validation data for directional solidification models, especially the direct observations of metallic alloys, both for cellular and dendritic structures. In this study, we performed 4D synchrotron X-ray tomographic imaging (three spatial directions plus time), to study the transition from cellular to a columnar dendritic morphology and the subsequent growth of columnar dendrite in a temperature gradient stage. The cellular morphology was found to be highly complex, with frequent lateral bridging. Protrusions growing out of the cellular front with the onset of morphological instabilities were captured, together with the subsequent development of these protrusions into established dendrites. Other mechanisms affecting the solidification microstructure, including dendrite fragmentation/pinch-off were also captured and the quantitative results were compared to proposed mechanisms. The results demonstrate that 4D imaging can provide new data to both inform and validate solidification models

    The influence of P-glycoprotein expression and its inhibitors on the distribution of doxorubicin in breast tumors

    Get PDF
    Abstract Background Anti-cancer drugs access solid tumors via blood vessels, and must penetrate tumor tissue to reach all cancer cells. Previous studies have demonstrated steep gradients of decreasing doxorubicin fluorescence with increasing distance from blood vessels, such that many tumor cells are not exposed to drug. Studies using multilayered cell cultures show that increased P-glycoprotein (PgP) is associated with better penetration of doxorubicin, while PgP inhibitors decrease drug penetration in tumor tissue. Here we evaluate the effect of PgP expression on doxorubicin distribution in vivo. Methods Mice bearing tumor sublines with either high or low expression of PgP were treated with doxorubicin, with or without pre-treatment with the PgP inhibitors verapamil or PSC 833. The distribution of doxorubicin in relation to tumor blood vessels was quantified using immunofluorescence. Results Our results indicate greater uptake of doxorubicin by cells near blood vessels in wild type as compared to PgP-overexpressing tumors, and pre-treatment with verapamil or PSC 833 increased uptake in PgP-overexpressing tumors. However, there were steeper gradients of decreasing doxorubicin fluorescence in wild-type tumors compared to PgP overexpressing tumors, and treatment of PgP overexpressing tumors with PgP inhibitors led to steeper gradients and greater heterogeneity in the distribution of doxorubicin. Conclusion PgP inhibitors increase uptake of doxorubicin in cells close to blood vessels, have little effect on drug uptake into cells at intermediate distances, and might have a paradoxical effect to decrease doxorubicin uptake into distal cells. This effect probably contributes to the limited success of PgP inhibitors in clinical trials
    • …
    corecore