67 research outputs found

    Effectiveness of learning and experimentation approaches for farmers as a community based strategy for banana xanthomonas wilt management

    Get PDF
    Banana Xanthomonas wilt (BXW) is a devastating disease for banana and enset in east, central and Horn of Africa since 1968. The disease has spread to all banana growing countries in the region in the last decade, causing yield losses of up to 80 to 100%. Several efforts have been undertaken to develop and implement technologies for BXW management and their effective deployment with varying successes. This paper presents a new participatory approach for managing BXW named Learning and Experimentation Approaches For Farmers (LEAFF) and describes how it was implemented, tested and evaluated among 220 farmers across two agroecological regions, central and South-western Uganda. Results showed that there was a general reduction in the number of infected plants, corresponding to 7% increase in productivity of banana among the LEAFF compared to the non LEAFF participating farmers. The findings suggested that scaling out LEAFF to different parts in the region can significantly contribute to effective and sustainable adoption of BXW management technologies, and in turn, can lead to improved productivity and smallholder farmers’ livelihoods

    Management of Banana Xanthomonas Wilt: Evidence from impact of adoption of cultural control practices in Uganda

    Get PDF
    Banana Xanthomonas Wilt (BXW) is an important emerging and non-curable infectious plant pathogen in sub-Saharan Africa that can cause up to 100% yield loss, negatively impacting sustainable access to food and income to more than 100 million banana farmers. This study disentangles adopters into partial and full adopters to investigate the factors that are relevant to sustain the adoption process of BXW control practices and quantifies the impact of adopting the practices. Data from a randomly selected sample of 1200 banana farmers in Uganda where the disease is endemic was used. A multinomial logit model was used to determine the factors affecting adoption of control practices and augmented inverse probability weighting was employed to estimate the impacts of adoption on banana productivity and sales. Results show that training a woman farmer and having diverse sources of information about BXW control practices increased adoption of the control practices and reduced the disease incidences. Farmers who adopted all the recommended control practices achieved significantly the highest values of banana production and sales. We conclude that improving information access through farmers’ preferred communication channels, having women-inclusive trainings, and a combination of cultural practices are effective ways for sustaining adoption of the control practices

    Agrobacterium mediated transformation of banana (Musa sp.) cv. Sukali Ndiizi (ABB) with a modified Carica papaya cystatin (CpCYS) gene

    Get PDF
    Conventional banana breeding for pest and disease resistance is a very difficult and slow process due to the limited sources of resistance, sterility of cultivated banana varieties, high polyploidy levels, long cropping cycle and the lack of rapid screening methods. Molecular breeding using the transgenic approach with candidate genes such as cystatins offers an alternative method to banana improvement. Cystatin proteins inhibit the activity of cysteine proteases responsible for the breakdown of dietary proteins in the gut of many pests including nematodes resulting in protein deficiency. In this study, the papaya cystatin gene was introduced into the banana genome. Embryogenic cell suspension (ECS) cultures of the banana cultivar Sukali Ndiizi (ABB) were used as explants material for the successful transformation of banana. The Carica papaya cystatin gene (CpCYS-Mut89) previously modified to improve its inhibitory potential against banana pests was introduced into this cultivar using Agrobacterium tumefaciens, strain LBA4404 and the gus reporter gene was used to observe successful transformation process. We report the successful protocol for routine transformation of this cultivar, which was completed in six months with plant regeneration observed at a frequency of 23%. An additional four months was required to multiply the regenerant lines in order to have at least 20 plants per line for downstream challenging studies. Putatively transgenic plants were analyzed by PCR using hpt and CpCYS-Mut89 specific primers to confirm the presence of transgenes. Out of 28 selected lines, 27 were positive for both hpt and CpCYS-Mut89 transgenes giving 96.4% transformation efficiency. Five lines were then selected on the basis of putative PCR positives and a Southern blot analysis gave hybridization signals with 1 to 4 copy number integration patterns characteristic of Agrobacterium mediated transformation. These results confirm stable gene integration in East African banana cultivar cv. Sukali Ndiizi (genome group ABB) through an efficient Agrobacterium-mediated transformation protocol described for routine use in future improvement of this crop with genes of economic importance.Keywords: Cystatins, banana, Agrobacterium mediated transformation, southern blotAfrican Journal of Biotechnology Vol. 12(15), pp. 1811-181

    Preliminary evaluation of improved banana varieties in Mozambique

    Get PDF
    Banana (Musa spp.) production in Mozambique is largely confined to the Cavendish variety that is eaten as a dessert. On the other hand, banana is a staple food crop in many countries in sub-Saharan Africa. The introduction of a range of high yielding and disease resistant cooking and dessert varieties in Mozambique could play a potential role in ensuring food security and raising incomes of millions of small scale farmers. In the framework of a USAID-funded project on dissemination and evaluation of improved banana varieties, plantlets of new Musahybrids were distributed to small-scale farmers. In addition, several demonstration plots and an on-station trial at the Agrarian Research Institute of Mozambique (IIAM), Umbeluzi research farm were established. The objectives of this study were (i) to evaluate the general performance of the hybrids in the different locations andanalyse data collected from one of the sites, and (ii) to assess farmer acceptability of the hybrids in one of the agro-ecologies in Mozambique. The FHIA (Fundacion Hondurena de Investigacion Agricola) hybrids performed relatively well in the more moist agro-ecologies and where irrigation was available, but not in the drier areas in the south of Maputo. Although ‘FHIA 17’ was the most vigorous, this variety took the longest time to produce a bunch. The hybrid, ‘SH 3640’ produced the largest bunch but this was not significantly different from that of‘Grand Naine’ the local check used in the trials. The hybrid ‘SH3460’ and ‘Grand Naine’ emerged as the best cultivars in terms of post-harvest quality and acceptability. Less than 50% of the participants indicated their preference for ‘FHIA17’, ‘FHIA21’ or ‘FHIA23’. Feedback from farmers involved in the on-farm activitiesindicated that those from the central and southern parts of the country preferred dessert types, while those from the north preferred both dessert and cooking types

    Corm damage caused by banana weevils Cosmopolites sordidus (Germar) collected from different banana growing regions in Uganda

    Get PDF
    In this study, both healthy tissue culture plantlets and maiden suckers of the Nakitembe cultivar were used to assess the damage level variation caused by banana weevils collected from different banana growing regions. Seventy-nine (79) tissue culture plantlets and fifty (50) suckers were established in buckets in a randomized complete block design for 5 months. Ten adult weevils (5 females and 5 males) were introduced at the base of each plant, and the buckets were covered with a weevil proof mesh. Weevil damage was estimated as a percentage at 60 days after the weevil introduction by estimating the peripheral damage (PD), total cross section corm damage (XT ) and above the collar damage (ACD)

    Distribution, incidence and farmers knowledge of banana Xanthomonas wilt in Burundi

    Get PDF
    Banana Xanthomonas wilt (BXW) is a devastating bacterial disease caused by Xanthomonas campestris pv. musacearum. The disease was simultaneously reported in Cankuzo and Bubanza provinces, Burundi, in November 2010. However, the extent to which the disease has spread to other banana growing regions in the country is unknown. Therefore, to ascertain the distribution and incidence of the disease and farmers’ knowledge on measures to control the disease, a survey was conducted in all 16 banana growing provinces of Burundi in August 2011. A total of 208 farms were sampled, selecting six farms per surveyed commune, three affected and three non-affected. The survey was conducted using a structured questionnaire. The disease was present in 10 out of 16 provinces constituting all agricultural lands in Burundi. The highest incidence was recorded in Ruyigi province (34%), where the Kayinja system is dominant and the lowest in Muyinga (3%), where the East African Highland bananas (EAHB) dominate. Awareness of BXW symptoms, modes of spread and control measures was generally low, ranging from 8 to 30% of households surveyed. The limited knowledge of the disease among farmers was thought to be largely responsible for driving the epidemic in Burundi

    Agrobacterium mediated transformation of banana (Musa sp.) cv. Sukali Ndiizi (ABB) with a modified Carica papaya cystatin (CpCYS) gene

    Get PDF
    Conventional banana breeding for pest and disease resistance is a very difficult and slow process due to the limited sources of resistance, sterility of cultivated banana varieties, high polyploidy levels, long cropping cycle and the lack of rapid screening methods. Molecular breeding using the transgenic approach with candidate genes such as cystatins offers an alternative method to banana improvement. Cystatin proteins inhibit the activity of cysteine proteases responsible for the breakdown of dietary proteins in the gut of many pests including nematodes resulting in protein deficiency. In this study, the papaya cystatin gene was introduced into the banana genome. Embryogenic cell suspension (ECS) cultures of the banana cultivar Sukali Ndiizi (ABB) were used as explants material for the successful transformation of banana. The Carica papaya cystatin gene (CpCYS-Mut89) previously modified to improve its inhibitory potential against banana pests was introduced into this cultivar using Agrobacterium tumefaciens, strain LBA4404 and the gus reporter gene was used to observe successful transformation process. We report the successful protocol for routine transformation of this cultivar, which was completed in six months with plant regeneration observed at a frequency of 23%. An additional four months was required to multiply the regenerant lines in order to have at least 20 plants per line for downstream challenging studies. Putatively transgenic plants were analyzed by PCR using hpt and CpCYS-Mut89 specific primers to confirm the presence of transgenes. Out of 28 selected lines, 27 were positive for both hpt and CpCYS-Mut89 transgenes giving 96.4% transformation efficiency. Five lines were then selected on the basis of putative PCR positives and a Southern blot analysis gave hybridization signals with 1 to 4 copy number integration patterns characteristic of Agrobacterium mediated transformation. These results confirm stable gene integration in East African banana cultivar cv. Sukali Ndiizi (genome group ABB) through an efficient Agrobacterium-mediated transformation protocol described for routine use in future improvement of this crop with genes of economic importance.Bioversity International through the National Banana Research Programmme of the National Agricultural Research Organization, Uganda.http://www.academicjournals.org/AJBam201

    Genetically engineered bananas resistant to Xanthomonas wilt disease and nematodes

    Get PDF
    Banana is an important staple food crop feeding more than 100 million Africans, but is subject to severe productivity constraints due to a range of pests and diseases. Banana Xanthomonas wilt caused by Xanthomonas campestris pv. musacearum is capable of entirely destroying a plantation while nematodes can cause losses up to 50% and increase susceptibility to other pests and diseases. Development of improved varieties of banana is fundamental in order to tackle these challenges. However, the sterile nature of the crop and the lack of resistance in Musa germplasm make improvement by traditional breeding techniques either impossible or extremely slow. Recent developments using genetic engineering have begun to address these problems. Transgenic banana expressing sweet pepper Hrap and Pflp genes have demonstrated complete resistance against X. campestris pv. musacearum in the field. Transgenic plantains expressing a cysteine proteinase inhibitors and/or synthetic peptide showed enhanced resistance to a mixed species population of nematodes in the field. Here, we review the genetic engineering technologies which have potential to improve agriculture and food security in Africa
    • 

    corecore