6 research outputs found

    4D monitoring of active sinkholes with a Terrestrial Laser Scanner (TLS): A Case study in the evaporite karst of the Ebro Valley, NE Spain

    Get PDF
    This work explores, for the first time, the application of a Terrestrial Laser Scanner (TLS) and a comparison of point clouds in the 4D monitoring of active sinkholes. The approach is tested in three highly-active sinkholes related to the dissolution of salt-bearing evaporites overlain by unconsolidated alluvium. The sinkholes are located in urbanized areas and have caused severe damage to critical infrastructure (flood-control dike, a major highway). The 3D displacement models derived from the comparison of point clouds with exceptionally high spatial resolution allow complex spatial and temporal subsidence patterns within one of the sinkholes to be resolved. Detected changes in the subsidence activity (e.g., sinkhole expansion, translation of the maximum subsidence zone, development of incipient secondary collapses) are related to potential controlling factors such as floods, water table changes or remedial measures. In contrast, with detailed mapping and high-precision leveling, the displacement models, covering a relatively short time span of around 6 months, do not capture the subtle subsidence (< 0.6-1 cm) that affects the marginal zones of the sinkholes, precluding precise mapping of the edges of the subsidence areas. However, the performance of TLS can be adversely affected by some methodological limitations and local conditions: (1) limited accuracy in large investigation areas that require the acquisition of a high number of scans, increasing the registration error; (2) surface changes unrelated to sinkhole activity (e.g., vegetation, loose material); (3) traffic-related vibrations and wind blast that affect the stability of the scanner

    Examining Neanderthal and carnivore occupations of Teixoneres Cave (Moià, Barcelona, Spain) using archaeostratigraphic and intra-site spatial analysis

    Get PDF
    Teixoneres Cave (Moia, Barcelona, Spain) is a reference site for Middle Palaeolithic studies of the Iberian Peninsula. The cave preserves an extensive stratigraphic sequence made up of eight units, which is presented in depth in this work. The main goal of this study is to undertake an initial spatial examination of Unit III, formed during Marine Isotope Stage 3, with the aim of understanding spatial organization and past activities developed by Neanderthals and carnivores (bears, hyenas and smaller carnivores). The total sample analysed includes 38,244 archaeological items and 5888 limestone blocks. The application of GIS tools allows us to clearly distinguish three geologically-defined stratigraphic subunits. Unit III has been previously interpreted as a palimpsest resulting from alternating occupation of the cave by human groups and carnivores. The distribution study shows that faunal specimens, lithic artefacts, hearths and charcoal fragments are significantly concentrated at the entrance of the cave where, it is inferred, hominins carried out different activities, while carnivores preferred the sheltered zones in the inner areas of the cave. The results obtained reveal a spatial pattern characterized by fire use related zones, and show that the site was occupied by Neanderthals in a similar and consistent way throughout the (&gt;)7000 years range covered by the analysed subunits. This spatial pattern is interpreted as resulting from repeated short-term human occupations

    El hidrolacolito de las Calderuelas (Parque Nacional de la Sierra de Guadarrama), una morfología periglaciar singular

    Full text link
    This research describes the finding of a hydro-laccolith in the Sierra de Guadarrama (Central System). The study, based on the combination of Digital Terrain Models (DTM) and geoelectrical data, allowed the characterization of the surface morphology and internal structure. The results allow establishing the genesis of this periglacial-related structure and the role played by slope processes in its evolution. Freeze-thawing cycles and hydrogeological conditions are responsible factors that control its evolution over time. Such type of structures show an extraordinary environmental sensitivity, thus their monitoring is of great interest to guarantee their further preservation

    Examining Neanderthal and carnivore occupations of Teixoneres Cave (Moià, Barcelona, Spain) using archaeostratigraphic and intra-site spatial analysis

    Get PDF
    Teixoneres Cave (Moià, Barcelona, Spain) is a reference site for Middle Palaeolithic studies of the Iberian Peninsula. The cave preserves an extensive stratigraphic sequence made up of eight units, which is presented in depth in this work. The main goal of this study is to undertake an initial spatial examination of Unit III, formed during Marine Isotope Stage 3, with the aim of understanding spatial organization and past activities developed by Neanderthals and carnivores (bears, hyenas and smaller carnivores). The total sample analysed includes 38,244 archaeological items and 5888 limestone blocks. The application of GIS tools allows us to clearly distinguish three geologically-defined stratigraphic subunits. Unit III has been previously interpreted as a palimpsest resulting from alternating occupation of the cave by human groups and carnivores. The distribution study shows that faunal specimens, lithic artefacts, hearths and charcoal fragments are significantly concentrated at the entrance of the cave where, it is inferred, hominins carried out different activities, while carnivores preferred the sheltered zones in the inner areas of the cave. The results obtained reveal a spatial pattern characterized by fire use related zones, and show that the site was occupied by Neanderthals in a similar and consistent way throughout the ˃ 7000 years range covered by the analysed subunits. This spatial pattern is interpreted as resulting from repeated short-term human occupations.Leandro Zilio, Heidi Hammond, Theodoros Karampaglidis, Laura Sánchez-Romero, Ruth Blasco, Florent Rivals ... et al

    The Prados del Cervunal morainic complex: Evidence of a MIS 2 glaciation in the Iberian Central System synchronous to the global LGM

    No full text
    The area of Prados del Cervunal (PC) is an intra-morainic topographic depression located at 1800 m asl in the divide or interfluve between Garganta de Gredos and Garganta del Pinar valleys (Central Gredos; Iberian Central System, ICS). Both valleys, along with the adjacent Hoya Nevada, were occupied by glaciers during the Upper Pleistocene, leading to the development of the Prados del Cervunal moraine complexes studied in this work. Using cartographic methods and morphostratigraphic analysis, the three main glacial formations established in the Regional Chrono-Evolutionary Pattern for the ICS, Peripheral Deposits (PD), Principal Moraine (PM) and Internal Deposits (ID), have been identified and mapped in this area. The chronology of these formations has been implemented by Cosmic Ray Exposure (CRE) techniques using 10Be (new data) and 26Cl (previous data, recalculated in this work) in samples from morainic boulders. With these data, the following chrono-evolutionary sequence has been established: (stage 1) local-Maximum Ice Extent (MIE), dated in 25.0 ± 1.4 ka and corresponding to the maximum age obtained in these paleoglaciers; (stage 2) period of oscillations around the MIE, corresponding to the development of the PD Formation between ~25 ka and ~21 ka; (stage 3) period of readvance and stabilisation, dated after ~21 ka (average age obtained for the PD moraines attached to PM moraines) and previous to ~18 (minimum age obtained for a main crest of the PM formation); and (stage 4) onset of deglaciation dated around to ~18 ka (average of ages obtained for the first main crest of the ID formation). During the stages of maximum ice expansion, these three glaciers formed an Ice field whose tongues were interconnected on the PC flat by an ice transfluence system (stages 1 and 2, Plateau Glacier Period). In later stages, the ice masses were partitioned, giving rise to valley glaciers and large moraines forming morainic complexes like those of PC (stages 2, 3 and 4, Valley Glaciers Period). The local MIE and onset of deglaciation stages in this area show a good fit with the ages stablished to global level for the global Last Glacial Maximum (LGM) and the onset of the Last Glacial Termination (Termination I). They also show good correlation at local (with other areas of the ICS), peninsular (with other Iberian mountains) and continental (some areas of the Alps and mountains of Central Europe) level. Finally, this evolutionary sequence and its correlations allowed us to adjust and validate some units of the Regional Chrono-Evolutionary Pattern model and propose the Gredos-Pinar-Cabeza Nevada glacial system as benchmark for the glaciation of Marine Isotope Stage (MIS) 2 in the Iberian Peninsula.Ministerio de Ciencia e InnovaciónUniversidad de Castilla - La ManchaANID FONDECYTANID BASAL CHICDepto. de Geodinámica, Estratigrafía y PaleontologíaDepto. de GeografíaFac. de Ciencias GeológicasFac. de Geografía e HistoriaTRUEpu
    corecore