24 research outputs found

    Extension de l'outil Monte Carlo généraliste Geant4 pour la simulation de la radiolyse de l'eau dans le cadre du projet Geant4-DNA

    No full text
    Ce travail, rĂ©alisĂ© dans le cadre du projet Geant4-DNA, consiste Ă  concevoir un prototype pour la simulation des effets chimiques prĂ©coces des rayonnements ionisants. Le modĂšle de simulation Ă©tudiĂ© repose sur la reprĂ©sentation particule-continuum oĂč toutes les molĂ©cules sont explicitement simulĂ©es et oĂč le solvant est traitĂ© comme un continuum. La mĂ©thode proposĂ©e par cette thĂšse a pour but d'amĂ©liorer les performances de ce type de simulation. Elle se base sur (1) la combinaison d'une mĂ©thode de pas en temps dynamiques avec un processus de pont Brownien pour la prise en compte des rĂ©actions chimiques et afin d'Ă©viter une simulation Ă  pas en temps fixe, coĂ»teuse en temps de calcul, et (2) sur la structure de donnĂ©es k-d tree pour la recherche du voisin le plus proche permettant, pour une molĂ©cule donnĂ©e, une localisation rapide du rĂ©actif le plus proche. La prĂ©cision de l'algorithme est dĂ©montrĂ©e par la comparaison des rendements radiochimiques en fonction du temps et en fonction du transfert d'Ă©nergie linĂ©aire avec des rĂ©sultats d'autres codes Monte-Carlo et des donnĂ©es expĂ©rimentales. A partir de ce prototype, une tentative de prĂ©diction du nombre et du type d'interactions radicaux-ADN a Ă©tĂ© entreprise basĂ©e sur d'une description simplifiĂ©e du noyau cellulaire.The purpose of this work, performed under the Geant4-DNA project, is to design a prototype for simulating early chemical effects of ionizing radiation. The studied simulation model is based on the particle-continuum representation where all the molecules are explicitly simulated, and where the solvent is treated as a continuum. The method proposed by this thesis aims at improving the performance of this type of simulation. It is based on (1) a dynamical time steps method with a Brownian bridge process, to account for chemical reactions, which avoids the costly fixed time-step simulations, and (2) on the k-d tree data structure for quickly locating, for a given molecule, its closest reactants. The accuracy of the algorithm is demonstrated by comparing radiochemical yields over time and depending on the linear energy transfer with results obtained from other Monte Carlo codes and experimental data. Using this prototype, an attempt to predict the number and type of radical attacks on DNA has been performed using a simplified description of the cell nucleus

    Extension de l'outil Monte Carlo généraliste Geant4 pour la simulation de la radiolyse de l'eau dans le cadre du projet Geant4-DNA

    No full text
    Ce travail, rĂ©alisĂ© dans le cadre du projet Geant4-DNA, consiste Ă  concevoir un prototype pour la simulation des effets chimiques prĂ©coces des rayonnements ionisants. Le modĂšle de simulation Ă©tudiĂ© repose sur la reprĂ©sentation particule-continuum oĂč toutes les molĂ©cules sont explicitement simulĂ©es et oĂč le solvant est traitĂ© comme un continuum. La mĂ©thode proposĂ©e par cette thĂšse a pour but d'amĂ©liorer les performances de ce type de simulation. Elle se base sur (1) la combinaison d'une mĂ©thode de pas en temps dynamiques avec un processus de pont Brownien pour la prise en compte des rĂ©actions chimiques et afin d'Ă©viter une simulation Ă  pas en temps fixe, coĂ»teuse en temps de calcul, et (2) sur la structure de donnĂ©es k-d tree pour la recherche du voisin le plus proche permettant, pour une molĂ©cule donnĂ©e, une localisation rapide du rĂ©actif le plus proche. La prĂ©cision de l'algorithme est dĂ©montrĂ©e par la comparaison des rendements radiochimiques en fonction du temps et en fonction du transfert d'Ă©nergie linĂ©aire avec des rĂ©sultats d'autres codes Monte-Carlo et des donnĂ©es expĂ©rimentales. A partir de ce prototype, une tentative de prĂ©diction du nombre et du type d'interactions radicaux-ADN a Ă©tĂ© entreprise basĂ©e sur d'une description simplifiĂ©e du noyau cellulaire.The purpose of this work, performed under the Geant4-DNA project, is to design a prototype for simulating early chemical effects of ionizing radiation. The studied simulation model is based on the particle-continuum representation where all the molecules are explicitly simulated, and where the solvent is treated as a continuum. The method proposed by this thesis aims at improving the performance of this type of simulation. It is based on (1) a dynamical time steps method with a Brownian bridge process, to account for chemical reactions, which avoids the costly fixed time-step simulations, and (2) on the k-d tree data structure for quickly locating, for a given molecule, its closest reactants. The accuracy of the algorithm is demonstrated by comparing radiochemical yields over time and depending on the linear energy transfer with results obtained from other Monte Carlo codes and experimental data. Using this prototype, an attempt to predict the number and type of radical attacks on DNA has been performed using a simplified description of the cell nucleus

    Mechanistic DNA damage simulations in Geant4-DNA Part 2: Electron and proton damage in a bacterial cell

    No full text
    We extended a generic Geant4 application for mechanistic DNA damage simulations to an Escherichia coli cell geometry, finding electron damage yields and proton damage yields largely in line with experimental results. Depending on the simulation of radical scavenging, electrons double strand breaks (DSBs) yields range from 0.004 to 0.010 DSB Gy-1 Mbp-1, while protons have yields ranging from 0.004 DSB Gy-1 Mbp-1 at low LETs and with strict assumptions concerning scavenging, up to 0.020 DSB Gy-1 Mbp-1 at high LETs and when scavenging is weakest. Mechanistic DNA damage simulations can provide important limits on the extent to which physical processes can impact biology in low background experiments. We demonstrate the utility of these studies for low dose radiation biology calculating that in E. coli, the median rate at which the radiation background induces double strand breaks is 2.8 × 10-8 DSB day-1, significantly less than the mutation rate per generation measured in E. coli, which is on the order of 10-3

    Mechanistic DNA damage simulations in Geant4-DNA part 1: A parameter study in a simplified geometry

    No full text
    Mechanistic modelling of DNA damage in Monte Carlo simulations is highly sensitive to the parameters that define DNA damage. In this work, we use a simple testing geometry to investigate how different choices of physics models and damage model parameters can change the estimation of DNA damage in a mechanistic DNA damage simulation built in Geant4-DNA. The choice of physics model can lead to variations by up to a factor of two in the yield of physically induced strand breaks, and the parameters that determine scavenging, and physical and chemical single strand break induction can have even larger consequences. Using low energy electrons as primary particles, a variety of parameters are tested in this geometry in order to arrive at a parameter set consistent with past simulation studies. We find that the modelling of scavenging can play an important role in determining results, and speculate that high-scavenging regimes, where only chemical radicals within 1 nm of DNA are simulated, could provide a good means of testing mechanistic DNA simulation

    Geant4 visualization: pBR322 plasmid DNA molecule irradiation by 20 MeV proton in liquid water

    No full text
    <p><strong>Geant4 simulation of pBR322 plasmid DNA irradiation by 20 MeV proton particle in liquid water.</strong></p> <p>Computer visualization of plasmid DNA irradiation in liquid water as modelled by the Geant4 Monte Carlo track structure code.</p> <p>pBR322 plasmid DNA geometry created using A. Vologodskii's group (see Huang, J., Schlick, T. and Vologodskii, T. (2001) Dynamics of site juxtaposition in supercoiled DNA. Proc. Natl. Acad. Sci. USA, 98, 968-973) was included in a Geant4-DNA physical and chemical stage simulation of liquid water sphere irradiation by a 20 MeV proton track.</p> <p>First the physical stage of radiation action is modelled; proton track is shown in green, yellow dots correspond to interaction events. Secondaries are followed down to thermalization.</p> <p>Next, the chemical stage simulation for first 100 ns is visualized. Individual chemical species diffusing in space and reacting with each other are shown as colour trails, the color codes chemical species type.</p> <p>Visualization combines the plasmid DNA geometry interface to A. Vologodskii's group code written by Václav Ơtěpán and the chem3 Geant4 example by M. Karamitros, S. Meylan, Y. Perrot and V. Ơtěpán.</p> <p>For more information about water radiolysis and chemical stage modelling using Geant4, please see  "Diffusion-controlled reactions modeling in Geant4-DNA" by M. Karamitros et al., doi:10.1016/j.jcp.2014.06.011</p

    Geant4-DNA visualization: Evolution of 1 keV electron track in liquid water in space and time

    No full text
    <p>Geant4-DNA generated track of 1 keV electron, followed up to 100 ns during chemical stage.<br>Using pre-release Geant4 10.1 code.</p> <p>First, the physical stage of radiation action is modeled, using Geant4-DNA physics. 1 keV electron track is fully slowed down and thermalized in a 150 nm sphere of liquid water.</p> <p>Yellow points correspond to interaction events in liquid water.</p> <p>Next, the chemical stage simulation for first 100 ns is visualized. Individual radical species diffusing in space and reacting with each other are shown as colour trails, the color coding chemical species type.</p> <p>References:</p> <p>Geant4 10.0, patch 01, Geant4 DNA chemistry code e964ead.<br>Code using the chem3 example by M. Karamitros, S. Meylan, Y. Perrot and V. Ơtěpán, video rendered by V. Ơtěpán on March 31, 2014.</p> <p>Internal ref: chem3-100ns-1kev-e</p> <p> </p

    Assessment of DNA damage with an adapted independent reaction time approach implemented in Geant4‐DNA for the simulation of diffusion‐controlled reactions between radio‐induced reactive species and a chromatin fiber

    No full text
    Purpose: Simulation of indirect damage originating from the attack of free radical species producedby ionizing radiation on biological molecules based on the independent pair approximation is investigated in this work. In addition, a new approach, relying on the independent pair approximation that isat the origin of the independent reaction time (IRT) method, is proposed in the chemical stage ofGeant4-DNA.Methods: This new approach has been designed to respect the current Geant4-DNA chemistryframework while proposing a variant IRT method. Based on the synchronous algorithm, this implementation allows us to access the information concerning the position of radicals and may make itmore convenient for biological damage simulations. Estimates of the evolution of free species as wellas biological hits in a segment of DNA chromatin fiber in Geant4-DNA were compared for thedynamic time step approach of the step-by-step (SBS) method, currently used in Geant4-DNA, andthis newly implemented IRT.Results: Results show a gain in computation time of a factor of 30 for high LET particle tracks witha better than 10% agreement on the number of DNA hits between the value obtained with the IRTmethod as implemented in this work and the SBS method currently available in Geant4-DNA.Conclusion: Offering in Geant4-DNA more efficient methods for the chemical step based on theIRT method is a task in progress. For the calculation of biological damage, information on the position of chemical species is a crucial point. This can be achieved using the method presented in thispape
    corecore