70 research outputs found

    Collective model description of shape coexistence and intruder states in cadmium isotopes based on relativistic energy density functional

    Full text link
    Low-energy structure of even-even 108116^{108-116}Cd isotopes is analyzed using a collective model that is based on the nuclear density functional theory. Spectroscopic properties are computed by solving the triaxial quadrupole collective Hamiltonian, with parameters determined by the constrained self-consistent mean-field calculations within the relativistic Hartree-Bogoliubov method employing a universal energy density functional and a pairing force. The collective Hamiltonian reproduces the observed quadrupole phonon states of vibrational character, which are based on the moderately deformed equilibrium minimum in the mean-field potential energy surface. In addition, the calculation yields a low-lying excited 0+0^+ and a γ\gamma-vibrational bands that are associated with a deformed local minimum close in energy to the ground state, consistently with the empirical interpretation of these bands as intruder bands. Observed energy spectra, B(E2)B(E2), and ρ2(E0)\rho^2(E0) values are, in general, reproduced reasonably well.Comment: 10 pages, 8 figure

    Islands of shape coexistence in proxy-SU(3) symmetry and in covariant density functional theory

    Full text link
    Shape coexistence in even-even nuclei is observed when the ground state band of a nucleus is accompanied by another K=0 band at similar energy but with radically different structure. We attempt to predict regions of shape coexistence throughout the nuclear chart using the parameter-free proxy-SU(3) symmetry and standard covariant density functional theory. Within the proxy-SU(3) symmetry the interplay of shell model magic numbers, formed by the spin-orbit interaction, and the 3-dimensional isotropic harmonic oscillator magic numbers, leads to the prediction of specific horizontal and vertical stripes on the nuclear chart in which shape coexistence should be possible. Within covariant density functional theory, specific islands on the nuclear chart are found, in which particle-hole excitations leading to shape coexistence are observed. The role played by particle-hole excitations across magic numbers as well as the collapse of magic numbers as deformation sets in is clarified.Comment: 12 pages, 2 figures, to appear in the Proceedings of the 39th International Workshop on Nuclear Theory (Rila 2022), ed. M. Gaidarov and N. Minkov (Heron Press, Sofia, 2022

    Microscopic origin of shape coexistence in the N=90, Z=64 region

    Full text link
    A microscopic explanation of the nature of shape coexistence in the N=90, Z=64 region is suggested, based on calculations of single particle energies through standard covariant density functional theory. It is suggested that shape coexistence in the N=90 region is caused by the protons, which create neutron particle-hole (p-h) excitations across the N=112 3-dimensional isotropic harmonic oscillator (3D-HO) magic number, signaling the start of the occupation of the 1i13/2 intruder orbital, which triggers stronger proton-neutron interaction, causing the onset of the deformation and resulting in the shape/phase transition from spherical to deformed nuclei described by the X(5) critical point symmetry. A similar effect is seen in the N=60, Z=40 region, in which p-h excitations across the N=70 3D-HO magic number occur, signaling the start of the occupation of the 1h11/2 intruder orbital.Comment: 6 pages, 7 figure

    Islands of shape coexistence from single-particle spectra in covariant density functional theory

    Full text link
    Using covariant density functional theory with the DDME2 functional and labeling single-particle energy orbitals by Nilsson quantum numbers, a search for particle-hole (p-h) excitations connected to the appearance of shape coexistence is performed for Z=38 to 84. Islands of shape coexistence are found near the magic numbers Z=82 and Z=50, restricted in regions around the relevant neutron midshells N=104 and N=66 respectively, in accordance to the well accepted p-h interpretation of shape coexistence in these regions, which we call neutron-induced shape coexistence, since the neutrons act as elevators creating holes in the proton orbitals. Similar but smaller islands of shape coexistence are found near N=90 and N=60, restricted in regions around the relevant proton midshells Z=66 and Z=39 respectively, related to p-h excitations across the 3-dimensional isotropic harmonic oscillator (3D-HO) magic numbers N=112 and N=70, which correspond to the beginning of the participation of the opposite parity orbitals 1i13/2 and 1h11/2 respectively to the onset of deformation. We call this case proton-induced shape coexistence, since the protons act as elevators creating holes in the neutron orbitals, thus offering a possible microscopic mechanism for the appearance of shape coexistence in these regions. In the region around N=40, Z=40, an island is located on which both neutron p-h excitations and proton p-h excitations are present.Comment: 21 pages, 17 figure

    Islands of shape coexistence: theoretical predictions and experimental evidence

    Full text link
    Parameter-free theoretical predictions based on a dual shell mechanism within the proxy-SU(3) symmetry of atomic nuclei, as well as covariant density functional theory calculations using the DDME2 functional indicate that shape coexistence (SC) based on the particle-hole excitation mechanism cannot occur everywhere on the nuclear chart, but is restricted on islands lying within regions of 7-8, 17-20, 34-40, 59-70, 96-112, 146-168 protons or neutrons. Systematics of data for even-even nuclei possessing K=0 (beta) and K=2 (gamma) bands support the existence of these islands, on which shape coexistence appears whenever the K=0 bandhead 0_2^+ and the first excited state of the ground state band 2_1^+ lie close in energy, with nuclei characterized by 0_2^+ lying below the 2_1^+ found in the center of these islands. In addition a simple theoretical mechanism leading to multiple shape coexistence is briefly discussed.Comment: 14 pages, 3 tables, 5 figure

    Why nuclear forces favor the highest weight irreducible representations of the fermionic SU(3) symmetry

    Full text link
    The consequences of the attractive, short-range nucleon-nucleon (NN) interaction on the wave functions of the Elliott SU(3) and the proxy-SU(3) symmetry are discussed. The NN interaction favors the most symmetric spatial SU(3) irreducible representation, which corresponds to the maximal spatial overlap among the fermions. The percentage of the symmetric components out of the total in an SU(3) wave function is introduced, through which it is found, that no SU(3) irrep is more symmetric than the highest weight irrep for a certain number of valence particles in a three dimensional, isotropic, harmonic oscillator shell. The consideration of the highest weight irreps in nuclei and in alkali metal clusters, leads to the prediction of a prolate to oblate shape transition beyond the mid-shell region.Comment: 16 pages, 1 figure, 10 table

    The islands of shape coexistence within the Elliott and the proxy-SU(3) Models

    Full text link
    A novel dual-shell mechanism for the phenomenon of shape coexistence in nuclei within the Elliott SU(3) and the proxy-SU(3) symmetry is proposed for all mass regions. It is supposed, that shape coexistence is activated by large quadrupole-quadrupole interaction and involves the interchange among the spin-orbit (SO) like shells within nucleon numbers 6-14, 14-28, 28-50, 50-82, 82-126, 126-184, which are being described by the proxy-SU(3) symmetry, and the harmonic oscillator (HO) shells within nucleon numbers 2-8, 8-20, 20-40, 40-70, 70-112, 112-168 of the Elliott SU(3) symmetry. The outcome is, that shape coexistence may occur in certain islands on the nuclear map. The dual-shell mechanism predicts without any free parameters, that nuclei with proton number (Z) or neutron number (N) between 7-8, 17-20, 34-40, 59-70, 96-112, 146-168 are possible candidates for shape coexistence. In the light nuclei the nucleons flip from the HO shell to the neighboring SO-like shell, which means, that particle excitations occur. For this mass region, the predicted islands of shape coexistence, coincide with the islands of inversion. But in medium mass and heavy nuclei, in which the nucleons inhabit the SO-like shells, shape coexistence is accompanied by a merging of the SO-like shell with the open HO shell. The shell merging can be accomplished by the outer product of the SU(3) irreps of the two shells and represents the unification of the HO shell with the SO-like shell.Comment: 31 pages, 25 figures, 4 table

    The major geoeffective solar eruptions of 2012 March 7: comprehensive Sun-to-Earth analysis

    Get PDF
    During the interval 2012 March 7-11 the geospace experienced a barrage of intense space weather phenomena including the second largest geomagnetic storm of solar cycle 24 so far. Significant ultra-low-frequency wave enhancements and relativistic-electron dropouts in the radiation belts, as well as strong energetic-electron injection events in the magnetosphere were observed. These phenomena were ultimately associated with two ultra-fast (>2000 kms-1) coronal mass ejections (CMEs), linked to two X-class flares launched on early 2012 March 7. Given that both powerful events originated from solar active region NOAA 11429 and their onsets were separated by less than an hour, the analysis of the two events and the determination of solar causes and geospace effects are rather challenging. Using satellite data from a flotilla of solar, heliospheric and magnetospheric missions a synergistic Sun-to-Earth study of diverse observational solar, interplanetary and magnetospheric data sets was performed. It was found that only the second CME was Earth-directed. Using a novel method, we estimated its near-Sun magnetic field at 13R⊙ to be in the range [0.01, 0.16] G. Steep radial fall-offs of the near-Sun CME magnetic field are required to match the magnetic fields of the corresponding interplanetary CME (ICME) at 1 AU. Perturbed upstream solar-wind conditions, as resulting from the shock associated with the Earth-directed CME, offer a decent description of its kinematics. The magnetospheric compression caused by the arrival at 1 AU of the shock associated with the ICME was a key factor for radiation-belt dynamics.Publisher PDFPeer reviewe

    Overview of ASDEX Upgrade Results

    Get PDF

    Poster display II clinical general

    Get PDF
    corecore