1,465 research outputs found
RNA interference in plant parasitic nematodes
RNA interference (RNAi, also called RNA-mediated interference) is a mechanism for RNA-guided regulation of gene expression in which double-stranded ribonucleic acid inhibits the expression of genes with complementary nucleotide sequences. Conserved in most eukaryotic organisms, the RNAi pathway is thought to have evolved as a form of innate immunity against viruses and also plays a major role in regulating development and genome maintenance. RNAi has recently been demonstrated in plant parasitic nematodes. It is a potentially powerful investigative tool for the genome-wide identification of gene function that should help improve our understanding of plant parasitic nematodes. RNAi should help identify gene and, hence, protein targets for nematode control strategie
Investigation of the Effects of Reaction Temperature in NiFe2O4 Nanoparticles Synthesis by Hydrothermal Method
In this experimental study was investigated the effect of reaction temperature in NiFe2O4 nanoparticles synthesis with hydrothermal method. An appropriate ratio of solutions nickel nitrate and ferric nitrate were dissolved in deionized water and poured into a crucible. Later, polyethylene glycol 600 (PEG
600) was added to this mixture. Samples were adjusted to pH 11 values using NaOH solution. Accordingly,
experiments were made at 180, 200 and 250 oC, respectively. The other parameters, were fixed as reaction
time 24 h and pH value 11. The structural and morphological properties of NiFe2O4 nanoparticles were determined by X-ray powder diffraction (XRD) and Scanning Electron microscopy (SEM). Results showed
that increasing calcination temperature contributed to cyristallinity of NiFe2O4 nano particles. But also average particle size increased. As a result, average particle size was calculated by using Debye-Scherrer
Formula as approximately 30 nm. However, this results was confirmed with SEM and TEM analysis.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3502
Evolution and nucleosynthesis of asymptotic giant branch stellar models of low metallicity
We present stellar evolutionary tracks and nucleosynthetic predictions for a
grid of stellar models of low- and intermediate-mass asymptotic giant branch
(AGB) stars at ([Fe/H]). The models cover an initial mass
range from 1 M to 7 M. Final surface abundances and stellar
yields are calculated for all elements from hydrogen to bismuth as well as
isotopes up to the iron group. We present the first study of neutron-capture
nucleosynthesis in intermediate-mass AGB models, including a super-AGB model,
of [Fe/H] = . We examine in detail a low-mass AGB model of 2 M
where the C(,)O reaction is the main source of
neutrons. We also examine an intermediate-mass AGB model of 5 M where
intershell temperatures are high enough to activate the Ne neutron
source, which produces high neutron densities up to n cm.
Hot bottom burning is activated in models with M. With the
3 M model we investigate the effect of varying the extent in mass of
the region where protons are mixed from the envelope into the intershell at the
deepest extent of each third dredge-up. We compare the results of the low-mass
models to three post-AGB stars with a metallicity of [Fe/H] . The
composition is a good match to the predicted neutron-capture abundances except
for Pb and we confirm that the observed Pb abundances are lower than what is
calculated by AGB models.Comment: 23 pages, 18 figures, 13 tables, accepted for publication in Ap
Rubidium, zirconium, and lithium production in intermediate-mass asymptotic giant branch stars
A recent survey of a large sample of Galactic intermediate-mass (>3 Msun)
asymptotic giant branch (AGB) stars shows that they exhibit large
overabundances of rubidium (Rb) up to 100--1000 times solar. These observations
set constraints on our theoretical notion of the slow neutron capture process
(s process) that occurs inside intermediate-mass AGB stars. Lithium (Li)
abundances are also reported for these stars. In intermediate-mass AGB stars,
Li can be produced by proton captures occuring at the base of the convective
envelope. For this reason the observations of Rb, Zr, and Li set complementary
constraints on different processes occurring in the same stars. We present
predictions for the abundances of Rb, Zr, and Li as computed for the first time
simultaneously in intermediate-mass AGB star models and compare them to the
current observational constraints. We find that the Rb abundance increases with
increasing stellar mass, as is inferred from observations but we are unable to
match the highest observed [Rb/Fe] abundances. Inclusion of a partial mixing
zone (PMZ) to activate the 13C(a,n)16O reaction as an additional neutron source
yields significant enhancements in the Rb abundance. However this leads to Zr
abundances that exceed the upper limits of the current observational
constraints. If the third dredge-up (TDU) efficiency remains as high during the
final stages of AGB evolution as during the earlier stages, we can match the
lowest values of the observed Rb abundance range. We predict large variations
in the Li abundance, which are observed. Finally, the predicted Rb production
increases with decreasing metallicity, in qualitative agreement with
observations of Magellanic Cloud AGB stars. However stellar models of Z=0.008
and Z=0.004 intermediate-mass AGB stars do not produce enough Rb to match the
observed abundances.Comment: 11 pages, 7 figures, accepted for publication on Astronomy &
Astrophysic
Reaction rate uncertainties and the operation of the NeNa and MgAl chains during HBB in intermediate-mass AGB stars
We test the effect of proton-capture reaction rate uncertainties on the
abundances of the Ne, Na, Mg and Al isotopes processed by the NeNa and MgAl
chains during hot bottom burning (HBB) in asymptotic giant branch (AGB) stars
of intermediate mass between 4 and 6 solar masses and metallicities between
Z=0.0001 and 0.02. We provide uncertainty ranges for the AGB stellar yields,
for inclusion in galactic chemical evolution models, and indicate which
reaction rates are most important and should be better determined. We use a
fast synthetic algorithm based on detailed AGB models. We run a large number of
stellar models, varying one reaction per time for a very fine grid of values,
as well as all reactions simultaneously. We show that there are uncertainties
in the yields of all the Ne, Na, Mg and Al isotopes due to uncertain
proton-capture reaction rates. The most uncertain yields are those of 26Al and
23Na (variations of two orders of magnitude), 24Mg and 27Al (variations of more
than one order of magnitude), 20Ne and 22Ne (variations between factors 2 and
7). In order to obtain more reliable Ne, Na, Mg and Al yields from IM-AGB stars
the rates that require more accurate determination are: 22Ne(p,g)23Na,
23Na(p,g)24Mg, 25Mg(p,g)26Al, 26Mg(p,g)27Al and 26Al(p,g)27Si. Detailed
galactic chemical evolution models should be constructed to address the impact
of our uncertainty ranges on the observational constraints related to HBB
nucleosynthesis, such as globular cluster chemical anomalies.Comment: accepted for publication on Astronomy & Astrophysic
Internal entrainment and the origin of jet-related broad-band emission in Centaurus A
Date of Acceptance: 14/11/2014The dimensions of Fanaroff-Riley class I jets and the stellar densities at galactic centres imply that there will be numerous interactions between the jet and stellar winds. These may give rise to the observed diffuse and 'knotty' structure of the jets in the X-ray, and can also mass load the jets. We performed modelling of internal entrainment from stars intercepted by Centaurus A's jet, using stellar evolution- and wind codes. From photometry and a codesynthesized population of 12 Gyr (Z = 0.004), 3 Gyr (Z = 0.008) and 0-60 Myr (Z = 0.02) stars, appropriate for the parent elliptical NGC 5128, the total number of stars in the jet is ∼8 × 108. Our model is energetically capable of producing the observed X-ray emission, even without young stars. We also reproduce the radio through X-ray spectrum of the jet, albeit in a downstream region with distinctly fewer young stars, and recover the mean X-ray spectral index.We derive an internal entrainment rate of ∼2.3 × 10-3M yr-1 which implies substantial jet deceleration. Our absolute nucleosynthetic yields for the Asymptotic Giant Branch stellar population in the jet show the highest amounts for 4He, 16O, 12C, 14N and 20Ne. If some of the events at ≥55 EeV detected by the Pierre Auger Observatory originate from internal entrainment in Centaurus A, we predict that their composition will be largely intermediate-mass nuclei with 16O, 12C and 14N the key isotopes.Peer reviewe
On the nature of the most obscured C-rich AGB stars in the Magellanic Clouds
The stars in the Magellanic Clouds with the largest degree of obscuration are
used to probe the highly uncertain physics of stars in the asymptotic giant
branch (AGB) phase of evolution. Carbon stars in particular, provide key
information on the amount of third dredge-up (TDU) and mass loss. We use two
independent stellar evolution codes to test how a different treatment of the
physics affects the evolution on the AGB. The output from the two codes are
used to determine the rates of dust formation in the circumstellar envelope,
where the method used to determine the dust is the same for each case. The
stars with the largest degree of obscuration in the LMC and SMC are identified
as the progeny of objects of initial mass and , respectively. This difference in mass is motivated by the
difference in the star formation histories of the two galaxies, and offers a
simple explanation of the redder infrared colours of C-stars in the LMC
compared to their counterparts in the SMC. The comparison with the Spitzer
colours of C-rich AGB stars in the SMC shows that a minimum surface carbon mass
fraction must have been reached by stars of initial
mass around . Our results confirm the necessity of adopting
low-temperature opacities in stellar evolutionary models of AGB stars. These
opacities allow the stars to obtain mass-loss rates high enough () to produce the amount of dust needed to reproduce the
Spitzer coloursComment: 14 pages, 5 figures, 1 table; accepted for publication in MNRAS Main
Journa
- …