181 research outputs found

    Prevalence of tick-borne haemoparasites in small ruminants in Turkey and diagnostic sensitivity of single-PCR and RLB

    Get PDF
    Background: Tick-borne haemoparasitic diseases (TBHDs), caused by Theileria, Babesia, Anaplasma and Ehrlichia, are common in regions of the world where the distributions of host, pathogen and vector overlap. Many of these diseases threaten livestock production and some also represent a concern to human public health. The primary aim of this study was to determine the prevalence of the above-mentioned pathogens in a large number of blood samples (n = 1979) collected from sheep (n = 1727) and goats (n = 252) in Turkey. A secondary aim was to assess the diagnostic sensitivity of a number of species-specific polymerase chain reaction (PCR) tests and the reverse line blotting (RLB) assay. DNA samples were screened using species-specific PCR for the presence of Theileria ovis, Theileria sp. MK, T. lestoquardi, T. uilenbergi, T. luwenshuni, Babesia ovis, Anaplasma ovis and A. phagocytophilum while RLB was undertaken to test for the presence of all known Theileria, Babesia, Anaplasma and Ehrlichia species. The diagnostic sensitivity of these two approaches was then compared in terms of their ability to detect single species and mixed infections. Results: Overall, 84 and 74.43% of the small ruminants sampled were identified as hosting one or more pathogen(s) by species-specific PCR and RLB respectively. The presence of Theileria sp. OT1, T. luwenshuni and T. uilenbergi in Turkey was revealed for the first time while the presence of Babesia motasi, B. crassa and T. separata in Turkish small ruminants was confirmed using molecular methods. A high prevalence of mixed infection was evident, with PCR and RLB approaches indicating that 52.24 and 35.42% of animals were co-infected with multiple species, respectively. More than 80% of the mixed infections contained T. ovis and/or A. ovis. The RLB approach was found to be capable of detecting mixed infections with species such as Theileria sp. OT1, Theileria sp. OT3, T. separata, B. crassa and Babesia spp. Conclusion: The results indicated that pathogens causing TBHDs are highly prevalent in sheep and goats in Turkey. The diagnostic sensitivity of species-specific single PCR was generally higher than that of RLB. However, the latter approach was still capable of identifying a high proportion of individuals containing mixed-species infections. The use of species-specific single PCR is recommended to accurately estimate pathogen prevalence and to identify co-infected hosts

    Molecular surveillance of Theileria parasites of livestock in Oman

    Get PDF
    Background: Theileriosis is one of the most prevalent infectious diseases of livestock in the Arabian Peninsula, and causes high rates of mortality and morbidity in sheep and cattle. However, there is a paucity of information on the distribution of Theileria spp. over the whole region and their impact on different hosts. The present study carried out a country-wide molecular survey for Theileria spp. of livestock in Oman across four governorates. The aim of the survey was to define the prevalence of Theileria spp. in cattle, sheep and goats, highlight risk factors for infection and identify the main tick species involved in parasite transmission. Material and methods: A total of 2020 animals were examined in the survey consisting of sheep [n = 592], goats [n = 981] and cattle [n = 447]. All three species were raised and co-grazed on the same farms. Theileria parasites were detected using PCR-RFLP and RLB of the 18S rRNA gene. Cloning and sequencing of the 18S rRNA was carried out on 11 T. lestoquardi isolates from Ash-Sharqiyah, and Ad-Dhahira governorates, and phylogenetic relationships were inferred using additional sequences of T. lestoquardi, T. annulata and T. ovis available in GenBank. Results: Theileria spp. prevalence was 72.3%, 36.7% and 2.7% among cattle, sheep and goats, respectively. Strong similarity in results was obtained using RLB and PCR-RFLP for detection of Theileria spp. however, RLB detected a higher rate of mixed infection than PCR-RFPL (P < 0.001). Theileria annulata was the only parasite detected in cattle, while sheep and goats carried T. ovis, T. lestoquardi and T. annulata as well as Theileria spp. OT1. Of the four Theileria spp. detected in small ruminants, overall T. ovis was most prevalent (sheep [33.4%], goats [2.0%]), whereas T. lestoquardi was less prevalent (sheep [22.0%], goats [0.5%]). A large proportion of infected sheep (19%) carried mixed infection of T. ovis and T. lestoquardi. However, single T. lestoquardi infections (3.0%) were less prevalent than T. ovis infections (14.5%). Risk of Theileria spp. infection was significantly higher for exotic breeds, relative to native breeds, of cattle (p = 0.00002) and sheep (p = 0.005). Phylogenetic analysis placed T. lestoquardi in Oman in the same clade as other T. lestoquardi strains isolated from the same regional area (Iraq and Iran). The main tick species, identified on the examined animals, Hyalomma anatolicum, was widely distributed and was found in all of the surveyed governorates. Conclusion: Theileria spp. are widespread in Oman with variable prevalence detected in different regions. Two economically important hosts, cattle and sheep are at high risk from virulent T. annulata and T. lestoquardi, respectively. The survey indicates extensive exposure to ticks and transmission of infection that has a significant economic impact. The higher prevalence of T. lestoquardi as mixed rather than single infection requires further investigation

    H pylori iceA alleles are disease-specific virulence factors

    Get PDF
    Aim: To characterize and compare genotype profiles of H pylori strains isolated from patients with chronic gastritis and duodenal ulcer in western part of Turkey. Methods: A total of 46 patients [30 chronic gastritis (CG) and 16 duodenal ulcer (DU)] who had undergone endoscopy because of dyspeptic complaints were studied. The antral biopsy specimens were evaluated for the presence of H pylori by rapid urease test and culture, and the genotype profiles were determined by real-time PCR. Results: The cagA gene was observed in 43 (93.5%) isolates. The vacA s1m2 genotype was the predominant subtype, found in 63.3% and 68.7% of isolates in patients with CG and DU, respectively. Twenty (66.6%) isolates from patients with CG were iceA2 positive while the iceA1 was predominant in those with DU (68.8%). In terms of the association of the iceA alleles to other genes, both alleles were significantly associated with the cagA vacA s1m2 genotype. Conclusion: The prevalent circulating genotypes in CG and DU were cagA vacA s1m2 iceA2 and cagA vacA s1m2 iceA1 genotype, respectively. It was found that cagA vacA s1m2 genotype seems to be common virulence factors in both CG and DU while iceA alleles show specificity for gastroduodenal pathologies in this study. © 2007 The WJG Press. All rights reserved

    Infection dynamics of Theileria annulata over a disease season following cell line vaccination

    Get PDF
    Tropical theileriosis is a tick-borne haemoparasitic disease of cattle caused by the protozoan parasite Theileria annulata. Globally, the economic impact of the disease is immense and enhanced control measures would improve livestock production in endemic regions. Immunisation with a live attenuated vaccine is an effective and widely used control method, however, the repeated use of live vaccines may have an impact on the field parasite population at a genetic level. Additionally, there has been an increasing number of reports of vaccine breakthrough cases in recent years. Thus, the present study was designed to evaluate the genetic composition of a parasite population over a disease season in a locality where live cell line vaccination is practised. A diverse range of parasite genotypes was identified and every T. annulata positive cattle blood sample harboured multiple parasite genotypes. An alteration in the major genotype and an increasing multiplicity of infection in individual animals was observed over the course of the disease season. Vaccination status was found not to effect within-host multiplicity of infection, while a significantly higher number of genotypes was detected in grazed cattle compared to non-grazed ones. A degree of genetic isolation was evident between parasite populations on a micro-geographic scale, which has not been reported previously for T. annulata. Analysis of parasite genotypes in vaccinated animals suggested only a transient effect of the vaccine genotype on the genetic diversity of the T. annulata population. The vaccine genotype was not detected among clones of two vaccine ‘breakthrough’ isolates and there is no suggestion that it was responsible for disease. The obtained data indicated that in the system studied there is no apparent risk of introducing the vaccine genotype into the population with only a transient effect on the genetic diversity of the parasite population during the disease season

    High genetic diversity and differentiation of the babesia ovis population in Turkey

    Get PDF
    Babesia ovis is a tick‐transmitted protozoan haemoparasite causing ovine babesiosis in sheep and goats leading to considerable economic loss in Turkey and neighbouring countries. There are no vaccines available, therapeutic drugs leave toxic residues in meat and milk, and tick vector control entails environmental risks. A panel of eight mini‐ and micro‐satellite marker loci was developed and applied to study genetic diversity and substructuring of B. ovis from western, central and eastern Turkey. A high genetic diversity (He = 0.799) was found for the sample of overall B. ovis population (n = 107) analyzed. Principle component analysis (PCoA) revealed the existence of three parasite subpopulations: (a) a small subpopulation of isolates from Aydin, western Turkey; (b) a second cluster predominantly generated by isolates from western Turkey; and (c) a third cluster predominantly formed by isolates from central and eastern Turkey. Two B. ovis isolates from Israel included in the analysis clustered with isolates from central and eastern Turkey. This finding strongly suggests substructuring of a major Turkish population into western versus central–eastern subpopulations, while the additional smaller B. ovis population found in Aydin could have been introduced, more recently, to Turkey. STRUCTURE analysis suggests a limited exchange of parasite strains between the western and the central–eastern regions and vice versa, possibly due to limited trading of sheep. Importantly, evidence for recombinant genotypes was obtained in regionally interchanged parasite isolates. Important climatic differences between the western and the central/eastern region, with average yearly temperatures of 21°C versus 15°C, correspond with the identified geographical substructuring. We hypothesize that the different climatic conditions may result in variation in the activity of subpopulations of Rhipicephalus spp. tick vectors, which, in turn, could selectively maintain and transmit different parasite populations. These findings may have important implications for vaccine development and the spread of drug resistance.Instituto de PatobiologíaFil: Mira, Anabela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Unlu, Ahmet Hakan. Van Yuzuncu Yil University. Vocational School of Gevas; TurquíaFil: Bilgic, Huseyin Bilgin. Aydin Adnan Menderes University. Faculty of Veterinary Medicine. Department of Parasitology; TurquíaFil: Bakirci, Serkan. Aydin Adnan Menderes University. Faculty of Veterinary Medicine. Department of Parasitology; TurquíaFil: Hacilarlioglu, Selin. Aydin Adnan Menderes University. Faculty of Veterinary Medicine. Department of Parasitology; TurquíaFil: Karagenc, Tulin. Aydin Adnan Menderes University. Faculty of Veterinary Medicine. Department of Parasitology; TurquíaFil: Carletti, Tamara. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; ArgentinaFil: Weir, William. Universityof Glasgow. College of Medical, Veterinary and Life Sciences; Reino UnidoFil: Shiels, Brian. Universityof Glasgow. College of Medical, Veterinary and Life Sciences; Reino UnidoFil: Shkap, Varda. Kimron Veterinary Institute. Division of Parasitology; IsraelFil: Aktas, Munir. Firat University. Faculty of Veterinary Medicine. Department of Parasitology; TurquíaFil: Florin-Christensen, Monica. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schnittger, Leonhard. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Selection of genotypes harbouring mutations in the cytochrome b gene of Theileria annulata is associated with resistance to buparvaquone

    Get PDF
    Buparvaquone remains the only effective therapeutic agent for the treatment of tropical theileriosis caused by Theileria annulata. However, an increase in the rate of buparvaquone treatment failures has been observed in recent years, raising the possibility that resistance to this drug is associated with the selection of T. annulata genotypes bearing mutation(s) in the cytochrome b gene (Cyto b). The aim of the present study was: (1) to demonstrate whether there is an association between mutations in the T. annulata Cyto b gene and selection of parasite-infected cells resistant to buparvaquone and (2) to determine the frequency of these mutations in parasites derived from infected cattle in the Aydın region of Türkiye. Susceptibility to buparvaquone was assessed by comparing the proliferative index of schizont-infected cells obtained from cattle with theileriosis before and/or after treatment with various doses of buparvaquone, using the 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colourimetric assay. The DNA sequence of the parasite Cyto b gene from cell lines identified as resistant or susceptible was determined. A total of six nonsynonymous and six synonymous mutations were identified. Two of the nonsynonymous mutations resulted in the substitutions V135A and P253S which are located at the putative buparvaquone binding regions of cytochrome b. Allele-specific PCR (AS-PCR) analyses detected the V135A and P253S mutations at a frequency of 3.90% and 3.57% respectively in a regional study population and revealed an increase in the frequency of both mutations over the years. The A53P mutation of TaPIN1 of T. annulata, previously suggested as being involved in buparvaquone resistance, was not detected in any of the clonal cell lines examined in the present study. The observed data strongly suggested that the genetic mutations resulting in V135A and P253S detected at the putative binding sites of buparvaquone in cytochrome b play a significant role in conferring, and promoting selection of, T. annulata genotypes resistant to buparvaquone, whereas the role of mutations in TaPIN1 is more equivocal

    A novel isolator-based system promotes viability of human embryos during laboratory processing

    Get PDF
    In vitro fertilisation (IVF) and related technologies are arguably the most challenging of all cell culture applications. The starting material is a single cell from which one aims to produce an embryo capable of establishing a pregnancy eventually leading to a live birth. Laboratory processing during IVF treatment requires open manipulations of gametes and embryos, which typically involves exposure to ambient conditions. To reduce the risk of cellular stress, we have developed a totally enclosed system of interlinked isolator-based workstations designed to maintain oocytes and embryos in a physiological environment throughout the IVF process. Comparison of clinical and laboratory data before and after the introduction of the new system revealed that significantly more embryos developed to the blastocyst stage in the enclosed isolator-based system compared with conventional open-fronted laminar flow hoods. Moreover, blastocysts produced in the isolator-based system contained significantly more cells and their development was accelerated. Consistent with this, the introduction of the enclosed system was accompanied by a significant increase in the clinical pregnancy rate and in the proportion of embryos implanting following transfer to the uterus. The data indicate that protection from ambient conditions promotes improved development of human embryos. Importantly, we found that it was entirely feasible to conduct all IVF-related procedures in the isolator-based workstations

    Diagnosis of Hepatozoon canis in young dogs by cytology and PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Hepatozoon canis </it>is a widespread tick-borne protozoan affecting dogs. The diagnosis of <it>H. canis </it>infection is usually performed by cytology of blood or buffy coat smears, but this method may not be sensitive. Our study aimed to evaluate the best method to achieve a parasitological diagnosis of <it>H. canis </it>infection in a population of receptive young dogs, previously negative by cytology and exposed to tick infestation for one summer season.</p> <p>Results</p> <p>A total of 73 mongrel dogs and ten beagles younger than 18 months of age, living in an animal shelter in southern Italy where dogs are highly infested by <it>Rhipicephalus sanguineus</it>, were included in this study. In March-April 2009 and in October 2009, blood and bone marrow were sampled from each dog. Blood, buffy coat and bone marrow were examined by cytology only (at the first sampling) and also by PCR for <it>H. canis </it>(second sampling). In March-April 2009, only one dog was positive for <it>H. canis </it>by cytological examination, whereas in October 2009 (after the summer season), the overall incidence of <it>H. canis </it>infection by cytological examinations was 43.9%. Molecular tests carried out on samples taken in October 2009 showed a considerably higher number of dogs positive by PCR (from 27.7% up to 51.2% on skin and buffy coat tissues, respectively), with an overall positivity of 57.8%. All animals, but one, which were positive by cytology were also PCR-positive. PCR on blood or buffy coat detected the highest number of <it>H. canis</it>-positive dogs displaying a sensitivity of 85.7% for both tissues that increased up to 98% when used in parallel. Twenty-six (74.8%) out of the 28 <it>H. canis</it>-positive dogs presented hematological abnormalities, eosinophilia being the commonest alteration observed.</p> <p>Conclusions</p> <p>The results suggest that PCR on buffy coat and blood is the best diagnostic assay for detecting <it>H. canis </it>infection in dogs, although when PCR is not available, cytology on buffy coat should be preferred to blood smear evaluation. This study has also demonstrated that <it>H. canis </it>infection can spread among young dogs infested by <it>R. sanguineus </it>and be present in the majority of the exposed population within 6 months.</p

    Identification of candidate transmission-blocking antigen genes in Theileria annulata and related vector-borne apicomplexan parasites

    Get PDF
    Background: Vector-borne apicomplexan parasites are a major cause of mortality and morbidity to humans and livestock globally. The most important disease syndromes caused by these parasites are malaria, babesiosis and theileriosis. Strategies for control often target parasite stages in the mammalian host that cause disease, but this can result in reservoir infections that promote pathogen transmission and generate economic loss. Optimal control strategies should protect against clinical disease, block transmission and be applicable across related genera of parasites. We have used bioinformatics and transcriptomics to screen for transmission-blocking candidate antigens in the tick-borne apicomplexan parasite, Theileria annulata. Results: A number of candidate antigen genes were identified which encoded amino acid domains that are conserved across vector-borne Apicomplexa (Babesia, Plasmodium and Theileria), including the Pfs48/45 6-cys domain and a novel cysteine-rich domain. Expression profiling confirmed that selected candidate genes are expressed by life cycle stages within infected ticks. Additionally, putative B cell epitopes were identified in the T. annulata gene sequences encoding the 6-cys and cysteine rich domains, in a gene encoding a putative papain-family cysteine peptidase, with similarity to the Plasmodium SERA family, and the gene encoding the T. annulata major merozoite/piroplasm surface antigen, Tams1. Conclusions: Candidate genes were identified that encode proteins with similarity to known transmission blocking candidates in related parasites, while one is a novel candidate conserved across vector-borne apicomplexans and has a potential role in the sexual phase of the life cycle. The results indicate that a ‘One Health’ approach could be utilised to develop a transmission-blocking strategy effective against vector-borne apicomplexan parasites of animals and humans
    corecore