872 research outputs found

    Functional involvement of γ-secretase in signaling of the triggering receptor expressed on myeloid cells-2 (TREM2).

    Get PDF
    BACKGROUND: Triggering receptor expressed on myeloid cells-2 (TREM2) exerts important functions in the regulation of monocytes, like dendritic cells, osteoclasts, tissue macrophages, and microglia. Mutations in TREM2 are associated with several diseases, including Nasu-Hakola disease, frontotemporal dementia, and Alzheimer's disease (AD). TREM2 undergoes sequential proteolytic processing by ectodomain shedding and intramembrane proteolysis. FINDINGS: We show that inhibition of γ-secretase-dependent cleavage of the TREM2 C-terminal fragment in cellular membranes interferes with TREM2-dependent signaling and cellular function. Inhibition of γ-secretase decreases membrane-proximal signaling and intracellular Ca(2+) response. Decreased signaling alters morphological changes and phagocytic activity of cells upon selective stimulation of TREM2. CONCLUSIONS: The data demonstrate the importance of γ-secretase-dependent intramembrane processing in TREM2-mediated signaling and, thus, a functional relation of two AD-associated proteins

    Inhibition of the stress-activated kinase, p38, does not affect the virus transcriptional program of herpes simplex virus type 1

    Get PDF
    To investigate the impact of stress kinase p38 activation on HSV-1 transcription, we performed a global transcript profile analysis of viral mRNA using an oligonucleotide-based DNA microarray. RNA was isolated from Vero cells infected with the KOS strain of HSV-1 in the presence or absence of SB203580, a pyridinyl imidazole inhibitor of p38. Under conditions that eliminated ATF2 activation but had no effect on c-, and reduced virus yield by 85–90%, no effect on accumulation of viral IE, DE, or L transcripts was observed by array analysis or selected Northern blot analysis at 2, 4, and 6 h post infection. Results of array data from cells infected with the ICP27 mutant d27-1 in the presence or absence of SB203580 only reflected the known restricted transcription phenotype of the ICP27 mutant. This result is consistent with a role for p38 activation on virus replication lying downstream of the essential role of ICP27 in DE and perhaps late transcription regulation. No effect of SB203580 on transcription was detected after infection with the ICP0 mutant 7134, at 0.5 or 5.0 PFU/cell, though decreases in the rate of accumulation of all kinetic classes of mRNA could be detected, relative to virus. These results indicate that inhibiting p38 activity in Vero cells, while significantly reducing virus yield, demonstrated no obvious impact on the program of viral transcription

    Post-Partum Pituitary Insufficiency and Livedo Reticularis Presenting a Diagnostic Challenge in a Resource Limited Setting in Tanzania: A Case Report, Clinical Discussion and Brief Review of Existing Literature.

    Get PDF
    Pituitary disorders following pregnancy are an important yet under reported clinical entity in the developing world. Conversely, post partum panhypopituitarism has a more devastating impact on women in such settings due to high fertility rates, poor obstetric care and scarcity of diagnostic and therapeutic resources available. A 37 year old African female presented ten years post partum with features of multiple endocrine deficiencies including hypothyroidism, hypoadrenalism, lactation failure and secondary amenorrhea. In addition she had clinical features of an underlying autoimmune condition. These included a history of post-partum thyroiditis, alopecia areata, livedo reticularis and deranged coagulation indices. A remarkable clinical response followed appropriate hormone replacement therapy including steroids. This constellation has never been reported before; we therefore present an interesting clinical discussion including a brief review of existing literature. Post partum pituitary insufficiency is an under-reported condition of immense clinical importance especially in the developing world. A high clinical index of suspicion is vital to ensure an early and correct diagnosis which will have a direct bearing on management and patient outcome

    Compressive Response of Polycrystalline NiCoMnGa High-Temperature Meta-magnetic Shape Memory Alloys

    Get PDF
    The effects of the addition of quaternary element, Co, to polycrystalline NiMnGa alloys on their magnetic and shape memory properties have been investigated. NiCoMnGa polycrystalline alloys have been found to demonstrate good shape memory and superelasticity behavior under compression at temperatures greater than 100 °C with about 3% transformation strain and low-temperature hysteresis. It is also possible to train the material to demonstrate a large two-way shape memory effect

    Laser Powder Bed Fusion of NiTiHf High-Temperature Shape Memory Alloy: Effect of Process Parameters on the Thermomechanical Behavior

    Get PDF
    Laser powder bed fusion has been widely investigated for shape memory alloys, primarily NiTi alloys, with the goal of tailoring microstructures and producing complex geometries. However, processing high temperature shape memory alloys (HTSMAs) remains unknown. In our previous study, we showed that it is possible to manufacture NiTiHf HTSMA, as one of the most viable alloys in the aerospace industry, using SLM and investigated the effect of parameters on defect formation. The current study elucidates the effect of process parameters (PPs) on the functionality of this alloy. Shape memory properties and the microstructure of additively manufactured Ni-rich NiTiHf alloys were characterized across a wide range of PPs (laser power, scanning speed, and hatch spacing) and correlated with energy density. The optimum laser parameters for defect-free and functional samples were found to be in the range of approximately 60–100 J/mm3. Below an energy density of 60 J/mm3, porosity formation due to lack-of-fusion is the limiting factor. Samples fabricated with energy densities of 60–100 J/mm3 showed comparable thermomechanical behavior in comparison with the starting as-cast material, and samples fabricated with higher energy densities (\u3e 100 J/mm3) showed very high transformation temperatures but poor thermomechanical behavior. Poor properties for samples with higher energies were mainly attributed to the excessive Ni loss and resultant change in the chemical composition of the matrix, as well as the formation of cracks and porosities. Although energy density was found to be an important factor, the outcome of this study suggests that each of the PPs should be selected carefully. A maximum actuation strain of 1.67% at 400 MPa was obtained for the sample with power, scan speed, and hatch space of 100 W, 400 mm/s, and 140 µm, respectively, while 1.5% actuation strain was obtained for the starting as-cast ingot. These results can serve as a guideline for future studies on optimizing PPs for fabricating functional HTSMAs

    Transposase-DNA complex structures reveal mechanisms for conjugative transposition of antibiotic resistance

    Get PDF
    Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes

    Effect of fulvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant

    Get PDF
    Lead (Pb) is a ubiquitous environmental pollutant capable to induce various morphological, physiological, and biochemical functions in plants. Only few publications focus on the influence of Pb speciation both on its phytoavailability and phytotoxicity. Therefore, Pb toxicity (in terms of lipid peroxidation, hydrogen peroxide induction, and photosynthetic pigments contents) was studied in Vicia faba plants in relation with Pb uptake and speciation. V. faba seedlings were exposed to Pb supplied as Pb(NO3)2 or complexed by two fulvic acids (FAs), i.e. Suwannee River fulvic acid (SRFA) and Elliott Soil fulvic acid (ESFA), for 1, 12, and 24 h under controlled hydroponic conditions. For both FAs, Pb uptake and translocation by Vicia faba increased at low level (5 mg l−1), whereas decreased at high level of application (25 mg l−1). Despite the increased Pb uptake with FAs at low concentrations, there was no influence on the Pb toxicity to the plants. However, at high concentrations, FAs reduced Pb toxicity by reducing its uptake. These results highlighted the role of the dilution factor for FAs reactivity in relation with structure; SRFA was more effective than ESFA in reducing Pb uptake and alleviating Pb toxicity to V. faba due to comparatively strong binding affinity for the heavy metal
    corecore