138 research outputs found

    Lactate signalling regulates fungal β-glucan masking and immune evasion

    Get PDF
    AJPB: This work was supported by the European Research Council (STRIFE, ERC- 2009-AdG-249793), The UK Medical Research Council (MR/M026663/1), the UK Biotechnology and Biological Research Council (BB/K017365/1), the Wellcome Trust (080088; 097377). ERB: This work was supported by the UK Biotechnology and Biological Research Council (BB/M014525/1). GMA: Supported by the CNPq-Brazil (Science without Borders fellowship 202976/2014-9). GDB: Wellcome Trust (102705). CAM: This work was supported by the UK Medical Research Council (G0400284). DMM: This work was supported by UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC/K000306/1). NARG/JW: Wellcome Trust (086827, 075470,101873) and Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology (097377). ALL: This work was supported by the MRC Centre for Medical Mycology and the University of Aberdeen (MR/N006364/1).Peer reviewedPostprin

    Dectin-1 isoforms contribute to distinct Th1/Th17 cell activation in mucosal candidiasis

    Get PDF
    We thank Dr. Cristina Massi Benedetti for digital art and editingRecognition of β-glucans by dectin-1 has been shown to mediate cell activation, cytokine production and a variety of antifungal responses. Here, we report that the functional activity of dectin-1 in mucosal immunity to Candida albicans is influenced by the genetic background of the host. Dectin-1 was required for the proper control of gastrointestinal and vaginal candidiasis in C57BL/6 but not BALB/c mice, the latter actually showing increased resistance in the absence of dectin-1. Susceptibility of dectin-1-deficient C57BL/6 mice to infection was associated with defective IL-17A, aryl hydrocarbon receptor-dependent IL-22 production as well as adaptive Th1 responses. In contrast, resistance of dectin-1-deficient BALB/c mice was associated with increased IL-17A and IL-22 production, and the skewing towards Th1/Treg immune responses that provide immunological memory. Disparate canonical/noncanonical NF-κB signaling pathways downstream dectin-1were activated in the two different mouse strains. Thus, the net activity of dectin-1 in antifungal mucosal immunity is dependent on the host’s genetic background that affects both the innate cytokine production as well as the adaptive Th1/Th17 cell activation upon dectin-1 signaling.The studies were supported by the Specific Targeted Research Project “ALLFUN” (FP7−HEALTH−2009 contract number 260338 to LR) and the Italian Project AIDS 2010 by ISS (Istituto Superiore di Sanità - contract number 40H40 to LR) and Fondazione Cassa di Risparmio di Perugia Project n. 2011.0124.021. AC and CC were financially supported by fellowships from Fundação para a Ciência e Tecnologia, Portugal (contracts SFRH/BPD/46292/2008 and SFRH/BD/65962/2009, respectively)

    Pharmacological Inhibition of Nicotinamide Phosphoribosyltransferase/Visfatin Enzymatic Activity Identifies a New Inflammatory Pathway Linked to NAD

    Get PDF
    Nicotinamide phosphoribosyltransferase (NAMPT), also known as visfatin, is the rate-limiting enzyme in the salvage pathway of NAD biosynthesis from nicotinamide. Since its expression is upregulated during inflammation, NAMPT represents a novel clinical biomarker in acute lung injury, rheumatoid arthritis, and Crohn's disease. However, its role in disease progression remains unknown. We report here that NAMPT is a key player in inflammatory arthritis. Increased expression of NAMPT was confirmed in mice with collagen-induced arthritis, both in serum and in the arthritic paw. Importantly, a specific competitive inhibitor of NAMPT effectively reduced arthritis severity with comparable activity to etanercept, and decreased pro-inflammatory cytokine secretion in affected joints. Moreover, NAMPT inhibition reduced intracellular NAD concentration in inflammatory cells and circulating TNFα levels during endotoxemia in mice. In vitro pharmacological inhibition of NAMPT reduced the intracellular concentration of NAD and pro-inflammatory cytokine secretion by inflammatory cells. Thus, NAMPT links NAD metabolism to inflammatory cytokine secretion by leukocytes, and its inhibition might therefore have therapeutic efficacy in immune-mediated inflammatory disorders

    Comparative Lipidomics of Azole Sensitive and Resistant Clinical Isolates of Candida albicans Reveals Unexpected Diversity in Molecular Lipid Imprints

    Get PDF
    Although transcriptome and proteome approaches have been applied to determine the regulatory circuitry behind multidrug resistance (MDR) in Candida, its lipidome remains poorly characterized. Lipids do acclimatize to the development of MDR in Candida, but exactly how the acclimatization is achieved is poorly understood. In the present study, we have used a high-throughput mass spectrometry-based shotgun approach and analyzed the lipidome of genetically matched clinical azole-sensitive (AS) and -resistant (AR) isolates of C. albicans. By comparing the lipid profiling of matched isolates, we have identified major classes of lipids and determined more than 200 individual molecular lipid species among these major classes. The lipidome analysis has been statistically validated by principal component analysis. Although each AR isolate was similar with regard to displaying a high MIC to drugs, they had a distinct lipid imprint. There were some significant commonalities in the lipid profiles of these pairs, including molecular lipid species ranging from monounsaturated to polyunsaturated fatty acid-containing phosphoglycerides. Consistent fluctuation in phosphatidyl serine, mannosylinositolphosphorylceramides, and sterol esters levels indicated their compensatory role in maintaining lipid homeostasis among most AR isolates. Notably, overexpression of either CaCdr1p or CaMdr1p efflux pump proteins led to a different lipidomic response among AR isolates. This study clearly establishes the versatility of lipid metabolism in handling azole stress among various matched AR isolates. This comprehensive lipidomic approach will serve as a resource for assessing strategies aimed at disrupting the functions of Candida lipids, particularly the functional interactions between lipids and MDR determinants

    Lack of Trehalose Accelerates H2O2-Induced Candida albicans Apoptosis through Regulating Ca2+ Signaling Pathway and Caspase Activity

    Get PDF
    Trehalose is a non-reducing disaccharide and can be accumulated in response to heat or oxidative stresses in Candida albicans. Here we showed that a C. albicans tps1Δ mutant, which is deficient in trehalose synthesis, exhibited increased apoptosis rate upon H2O2 treatment together with an increase of intracellular Ca2+ level and caspase activity. When the intracellular Ca2+ level was stimulated by adding CaCl2 or A23187, both the apoptosis rate and caspase activity were increased. In contrast, the presence of two calcium chelators, EGTA and BAPTA, could attenuate these effects. Moreover, we investigated the role of Ca2+ pathway in C. albicans apoptosis and found that both calcineurin and the calcineurin-dependent transcription factor, Crz1p, mutants showed decreased apoptosis and caspase activity upon H2O2 treatment compared to the wild-type cells. Expression of CaMCA1, the only gene found encoding a C. albicans metacaspase, in calcineurin-deleted or Crz1p-deleted cells restored the cell sensitivity to H2O2. Our results suggest that Ca2+ and its downstream calcineurin/Crz1p/CaMCA1 pathway are involved in H2O2 -induced C. albicans apoptosis. Inhibition of this pathway might be the mechanism for the protective role of trehalose in C. albicans

    Comparative Lipidomics in Clinical Isolates of Candida albicans Reveal Crosstalk between Mitochondria, Cell Wall Integrity and Azole Resistance

    Get PDF
    Prolonged usage of antifungal azoles which target enzymes involved in lipid biosynthesis invariably leads to the development of multi-drug resistance (MDR) in Candida albicans. We had earlier shown that membrane lipids and their fluidity are closely linked to the MDR phenomenon. In one of our recent studies involving comparative lipidomics between azole susceptible (AS) and azole resistant (AR) matched pair clinical isolates of C. albicans, we could not see consistent differences in the lipid profiles of AS and AR strains because they came from different patients and so in this study, we have used genetically related variant recovered from the same patient collected over a period of 2-years. During this time, the levels of fluconazole (FLC) resistance of the strain increased by over 200-fold. By comparing the lipid profiles of select isolates, we were able to observe gradual and statistically significant changes in several lipid classes, particularly in plasma membrane microdomain specific lipids such as mannosylinositolphosphorylceramides and ergosterol, and in a mitochondrial specific phosphoglyceride, phosphatidyl glycerol. Superimposed with these quantitative and qualitative changes in the lipid profiles, were simultaneous changes at the molecular lipid species levels which again coincided with the development of resistance to FLC. Reverse transcriptase-PCR of the key genes of the lipid metabolism validated lipidomic picture. Taken together, this study illustrates how the gradual corrective changes in Candida lipidome correspond to the development of FLC tolerance. Our study also shows a first instance of the mitochondrial membrane dysfunction and defective cell wall (CW) in clinical AR isolates of C. albicans, and provides evidence of a cross-talk between mitochondrial lipid homeostasis, CW integrity and azole tolerance

    Combining ChIP-chip and Expression Profiling to Model the MoCRZ1 Mediated Circuit for Ca2+/Calcineurin Signaling in the Rice Blast Fungus

    Get PDF
    Significant progress has been made in defining the central signaling networks in many organisms, but collectively we know little about the downstream targets of these networks and the genes they regulate. To reconstruct the regulatory circuit of calcineurin signal transduction via MoCRZ1, a Magnaporthe oryzae C2H2 transcription factor activated by calcineurin dephosphorylation, we used a combined approach of chromatin immunoprecipitation - chip (ChIP-chip), coupled with microarray expression studies. One hundred forty genes were identified as being both a direct target of MoCRZ1 and having expression concurrently differentially regulated in a calcium/calcineurin/MoCRZ1 dependent manner. Highly represented were genes involved in calcium signaling, small molecule transport, ion homeostasis, cell wall synthesis/maintenance, and fungal virulence. Of particular note, genes involved in vesicle mediated secretion necessary for establishing host associations, were also found. MoCRZ1 itself was a target, suggesting a previously unreported autoregulation control point. The data also implicated a previously unreported feedback regulation mechanism of calcineurin activity. We propose that calcium/calcineurin regulated signal transduction circuits controlling development and pathogenicity manifest through multiple layers of regulation. We present results from the ChIP-chip and expression analysis along with a refined model of calcium/calcineurin signaling in this important plant pathogen

    Functional Characterization of an Aspergillus fumigatus Calcium Transporter (PmcA) that Is Essential for Fungal Infection

    Get PDF
    Aspergillus fumigatus is a primary and opportunistic pathogen, as well as a major allergen, of mammals. The Ca+2-calcineurin pathway affects virulence, morphogenesis and antifungal drug action in A. fumigatus. Here, we investigated three components of the A. fumigatus Ca+2-calcineurin pathway, pmcA,-B, and -C, which encode calcium transporters. We demonstrated that CrzA can directly control the mRNA accumulation of the pmcA-C genes by binding to their promoter regions. CrzA-binding experiments suggested that the 5′-CACAGCCAC-3′ and 5′-CCCTGCCCC-3′ sequences upstream of pmcA and pmcC genes, respectively, are possible calcineurin-dependent response elements (CDREs)-like consensus motifs. Null mutants were constructed for pmcA and -B and a conditional mutant for pmcC demonstrating pmcC is an essential gene. The ΔpmcA and ΔpmcB mutants were more sensitive to calcium and resistant to manganese and cyclosporin was able to modulate the sensitivity or resistance of these mutants to these salts, supporting the interaction between calcineurin and the function of these transporters. The pmcA-C genes have decreased mRNA abundance into the alveoli in the ΔcalA and ΔcrzA mutant strains. However, only the A. fumigatus ΔpmcA was avirulent in the murine model of invasive pulmonary aspergillosis

    Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification

    Get PDF
    Many fungi restructured their proteomes through incorporation of serine (Ser) at thousands of protein sites coded by the leucine (Leu) CUG codon. How these fungi survived this potentially lethal genetic code alteration and its relevance for their biology are not understood. Interestingly, the human pathogen Candida albicans maintains variable Ser and Leu incorporation levels at CUG sites, suggesting that this atypical codon assignment flexibility provided an effective mechanism to alter the genetic code. To test this hypothesis, we have engineered C. albicans strains to misincorporate increasing levels of Leu at protein CUG sites. Tolerance to the misincorporations was very high, and one strain accommodated the complete reversion of CUG identity from Ser back to Leu. Increasing levels of Leu misincorporation decreased growth rate, but production of phenotypic diversity on a phenotypic array probing various metabolic networks, drug resistance, and host immune cell responses was impressive. Genome resequencing revealed an increasing number of genotype changes at polymorphic sites compared with the control strain, and 80% of Leu misincorporation resulted in complete loss of heterozygosity in a large region of chromosome V. The data unveil unanticipated links between gene translational fidelity, proteome instability and variability, genome diversification, and adaptive phenotypic diversity. They also explain the high heterozygosity of the C. albicans genome and open the door to produce microorganisms with genetic code alterations for basic and applied research.We thank Alexander Johnson for providing the C. albicans strains and plasmids and Judith Berman, Csaba Pál, and Dieter Söll for their useful comments and suggestions on the manuscript. The study was funded by the European Union Framework Program 7 (EUFP7) Sybaris Consortium Project 242220 and the Portuguese Science Foundation through Fundo Europeu de Desenvolvimento Regional (FEDER/FCT) Project PTDC/BIA-MIC/099826/2008.publishe
    corecore