22 research outputs found
Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV
PHENIX has measured the centrality dependence of charged hadron p_T spectra
from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T
decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction
of the contribution from hard scattering to high p_T hadron production. For
central collisions the yield at high p_T is shown to be suppressed compared to
binary nucleon-nucleon collision scaling of p+p data. This suppression is
monotonically increasing with centrality, but most of the change occurs below
30% centrality, i.e. for collisions with less than about 140 participating
nucleons. The observed p_T and centrality dependence is consistent with the
particle production predicted by models including hard scattering and
subsequent energy loss of the scattered partons in the dense matter created in
the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to
Phys. Lett. B. Revised to address referee concerns. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are publicly available at
http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
XAF1 as a modifier of p53 function and cancer susceptibility
Cancer risk is highly variable in carriers of the common TP53-R337H founder allele, possibly due to the influence of modifier genes. Whole-genome sequencing identified a variant in the tumor suppressor XAF1 (E134*/Glu134Ter/rs146752602) in a subset of R337H carriers. Haplotype-defining variants were verified in 203 patients with cancer, 582 relatives, and 42,438 newborns. The compound mutant haplotype was enriched in patients with cancer, conferring risk for sarcoma (P = 0.003) and subsequent malignancies (P = 0.006). Functional analyses demonstrated that wild-type XAF1 enhances transactivation of wild-type and hypomorphic TP53 variants, whereas XAF1-E134* is markedly attenuated in this activity. We propose that cosegregation of XAF1-E134* and TP53-R337H mutations leads to a more aggressive cancer phenotype than TP53-R337H alone, with implications for genetic counseling and clinical management of hypomorphic TP53 mutant carriers.Fil: Pinto, Emilia M.. St. Jude Children's Research Hospital; Estados UnidosFil: Figueiredo, Bonald C.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Chen, Wenan. St. Jude Children's Research Hospital; Estados UnidosFil: Galvao, Henrique C.R.. Hospital de Câncer de Barretos; BrasilFil: Formiga, Maria Nirvana. A.c.camargo Cancer Center; BrasilFil: Fragoso, Maria Candida B.V.. Universidade de Sao Paulo; BrasilFil: Ashton Prolla, Patricia. Universidade Federal do Rio Grande do Sul; BrasilFil: Ribeiro, Enilze M.S.F.. Universidade Federal do Paraná; BrasilFil: Felix, Gabriela. Universidade Federal da Bahia; BrasilFil: Costa, Tatiana E.B.. Hospital Infantil Joana de Gusmao; BrasilFil: Savage, Sharon A.. National Cancer Institute; Estados UnidosFil: Yeager, Meredith. National Cancer Institute; Estados UnidosFil: Palmero, Edenir I.. Hospital de Câncer de Barretos; BrasilFil: Volc, Sahlua. Hospital de Câncer de Barretos; BrasilFil: Salvador, Hector. Hospital Sant Joan de Deu Barcelona; EspañaFil: Fuster Soler, Jose Luis. Hospital Clínico Universitario Virgen de la Arrixaca; EspañaFil: Lavarino, Cinzia. Hospital Sant Joan de Deu Barcelona; EspañaFil: Chantada, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. St. Jude Children's Research Hospital; Estados UnidosFil: Vaur, Dominique. Comprehensive Cancer Center François Baclesse; FranciaFil: Odone Filho, Vicente. Universidade de Sao Paulo; BrasilFil: Brugières, Laurence. Institut de Cancerologie Gustave Roussy; FranciaFil: Else, Tobias. University of Michigan; Estados UnidosFil: Stoffel, Elena M.. University of Michigan; Estados UnidosFil: Maxwell, Kara N.. University of Pennsylvania; Estados UnidosFil: Achatz, Maria Isabel. Hospital Sirio-libanês; BrasilFil: Kowalski, Luis. A.c.camargo Cancer Center; BrasilFil: De Andrade, Kelvin C.. National Cancer Institute; Estados UnidosFil: Pappo, Alberto. St. Jude Children's Research Hospital; Estados UnidosFil: Letouze, Eric. Centre de Recherche Des Cordeliers; FranciaFil: Latronico, Ana Claudia. Universidade de Sao Paulo; BrasilFil: Mendonca, Berenice B.. Universidade de Sao Paulo; BrasilFil: Almeida, Madson Q.. Universidade de Sao Paulo; BrasilFil: Brondani, Vania B.. Universidade de Sao Paulo; BrasilFil: Bittar, Camila M.. Universidade Federal do Rio Grande do Sul; BrasilFil: Soares, Emerson W.S.. Hospital Do Câncer de Cascavel; BrasilFil: Mathias, Carolina. Universidade Federal do Paraná; BrasilFil: Ramos, Cintia R.N.. Hospital de Câncer de Barretos; BrasilFil: Machado, Moara. National Cancer Institute; Estados UnidosFil: Zhou, Weiyin. National Cancer Institute; Estados UnidosFil: Jones, Kristine. National Cancer Institute; Estados UnidosFil: Vogt, Aurelie. National Cancer Institute; Estados UnidosFil: Klincha, Payal P.. National Cancer Institute; Estados UnidosFil: Santiago, Karina M.. A.c.camargo Cancer Center; BrasilFil: Komechen, Heloisa. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Paraizo, Mariana M.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Parise, Ivy Z.S.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Hamilton, Kayla V.. St. Jude Children's Research Hospital; Estados UnidosFil: Wang, Jinling. St. Jude Children's Research Hospital; Estados UnidosFil: Rampersaud, Evadnie. St. Jude Children's Research Hospital; Estados UnidosFil: Clay, Michael R.. St. Jude Children's Research Hospital; Estados UnidosFil: Murphy, Andrew J.. St. Jude Children's Research Hospital; Estados UnidosFil: Lalli, Enzo. Institut de Pharmacologie Moléculaire et Cellulaire; FranciaFil: Nichols, Kim E.. St. Jude Children's Research Hospital; Estados UnidosFil: Ribeiro, Raul C.. St. Jude Children's Research Hospital; Estados UnidosFil: Rodriguez-Galindo, Carlos. St. Jude Children's Research Hospital; Estados UnidosFil: Korbonits, Marta. Queen Mary University of London; Reino UnidoFil: Zhang, Jinghui. St. Jude Children's Research Hospital; Estados UnidosFil: Thomas, Mark G.. Colegio Universitario de Londres; Reino UnidoFil: Connelly, Jon P.. St. Jude Children's Research Hospital; Estados UnidosFil: Pruett-Miller, Shondra. St. Jude Children's Research Hospital; Estados UnidosFil: Diekmann, Yoan. Colegio Universitario de Londres; Reino UnidoFil: Neale, Geoffrey. St. Jude Children's Research Hospital; Estados UnidosFil: Wu, Gang. St. Jude Children's Research Hospital; Estados UnidosFil: Zambetti, Gerard P.. St. Jude Children's Research Hospital; Estados Unido
Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016
The UN’s Sustainable Development Goals (SDGs) are grounded in the global ambition of “leaving no one behind”. Understanding today’s gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990–2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030
Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016
BACKGROUND: Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016.
METHODS: We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone.
FINDINGS: Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7-87·2), and for men in Singapore, at 81·3 years (78·8-83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, an
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
The method of optical investigations of the nanostructural diamond-like a-C:N films
A complex technique has been proposed for optical investigations of nanostructured diamond-like a—C:N films. To determine the thickness d, refractive index no and extinction coefficient n₀, the refraction ellipsometry at fixed wavelength λ₀ = 632.8 nm with different incidence angles has been used. Proceeding from the n₀, K₀ and d values, the n(λ), K(λ) dependences have been restored basing on the optical transmission curves within the 280-1200 nm range, and, as a consequence, the dependence of the imaginary part of dielectric constant, ξ", on the photon energy near the fundamental absorption edge. The band gap width Eg and the Tauc coefficient B have been determined for the films obtained under various technological conditions and preliminary conclusions have been drawn for the contributions from sp² and sp³ phases depending on those conditions