28 research outputs found

    Natalizumab therapy, 2013

    Get PDF
    Multiple sclerosis (MS) is the most common chronic disease of the central nervous system in young adults. No curative therapy is known. Currently, six drugs are available that can reduce the activity of MS. The first-line drugs can completely reduce the activity of the disease in nearly two-thirds of the patients. In the remainder, who suffer from breakthrough disease, the condition of the patient worsens, and second-line therapies must be used. The second-line drug natalizumab exhibits almost double efficacy of the first-line drugs, but also have less favourable adverse effects. As a severe side-effect for instance, natalizumab carries the risk of the development of progressive multifocal leucoencephalopathy (PML), caused by a polyoma virus, the JC virus. There are three major risk factors for PML: an anti-JCV antibody status, a long duration of natalizumab treatment and prior immunosuppressant therapy. The lowest-risk group (1:14 286) comprises of patients who are anti-JCV antibody-negative, in whom the prior immunosuppressant use and duration of natalizumab therapy do not influence the risk of PML. With no prior immunosuppressant treatment, the incidence of PML increases to 1 in 192 patients after 2 years among those who are anti-JCV antibody-positive. These data may lead the physician to decide to discontinue natalizumab treatment. The half-life of natalizumab is three months; during this time other therapies can not be administered and the patients encounter the rebound effect: as the patients receiving natalizumab therapy displayed a high disease activity before treatment, the rebound effect can lead to relapses. After the termination of natalizumab second-line disease-modifying therapy with fingolimod may be introduce; no PML cases occur in response to fingolimod treatment. In the large majority of patients taking natalizumab who do not develop PML, this drug is highly effective and can prevent the progression of MS. The benefit of therapy and the risk of PML must be considered on an individual basis, with regard to the disease activity, the progression and the MRI activity, before natalizumab therapy is implemented

    Neofabraea kienholzii, a novel causal agent of grapevine trunk diseases in Hungary

    Get PDF
    Recently, more and more new fungal pathogens have been described as causal agents of grapevine trunk diseases (GTDs), which lead to increasingly significant economic losses in viticulture worldwide. The genus Neofabraea consists of species mainly known as important plant pathogens causing perennial canker and bull’s eye rot, a common postharvest disease of apple (Malus domestica) and pear (Pyrus communis) fruits. Neofabraea kienholzii also causes lesions on pome fruits and canker on woody tissues, but its pathogenicity has not been demonstrated on grapevine yet. In 2015, two strains, identified as N. kienholzii based on ITS sequence data, were isolated from vines showing symptoms of GTDs in Hungary. For an unambiguous taxonomic placement of the isolates, four loci (ITS, LSU, TUB2 and RPB2) were amplified and sequenced. The phylogenetic analysis confirmed that the two isolates represent N. kienholzii. Pathogenicity tests performed on potted grapevines, shoots, and canes confirmed the virulence of these fungi. Their growth and sporulation on different media were also investigated. To the best of our knowledge, this is the first proof of N. kienholzii might cause symptoms on Vitis and might have a role in GTDs

    The fungus Kalmusia longispora is able to cause vascular necrosis on Vitis vinifera

    Get PDF
    Fungal diseases in agronomically important plants such as grapevines result in significantly reduced production, pecuniary losses, and increased use of environmentally damaging chemicals. Beside the well-known diseases, there is an increased interest in wood-colonizing fungal pathogens that infect the woody tissues of grapevines. In 2015, a traditional isolation method was performed on grapevine trunks showing symptoms of trunk diseases in Hungary. One isolate (T15142) was identified as Kalmusia longispora (formerly Dendrothyrium longisporum) according to morphological and phylogenetic analyses. To evaluate the pathogenicity of this fungus on grapevines, artificial infections were carried out under greenhouse and field conditions, including the CBS 824.84 and ex-type CBS 582.83 strains. All isolates could be re-isolated from inoculated plants; however, varying virulence was observed among them in terms of the vascular necrosis caused. The incidence and severity of this symptom seemed to be congruent with the laccase-producing capabilities of the isolates. This is the first report on the ability of Kalmusia longispora to cause symptoms on grapevines, and on its possible dependence on laccase secretion

    Above-ground parts of white grapevine Vitis vinifera cv. Furmint share core members of the fungal microbiome

    Get PDF
    Grapevine (Vitis vinifera) is a reservoir of fungal endophytes that may affect its growth, health status and grape production. Although there is growing interest in comparing fungal communities of mainly red grape varieties across various factors using only high-throughput sequencing, the small-scale mycobiome variations in geographically close vineyards need further examination. We aimed to characterize the fungal microbiome of the above-ground tissues of V. vinifera cv. Furmint in different plant parts, seasons and sites using culture-dependent and culture-independent methods, and in planta fluorescent microscopic visualization techniques. Samples were collected from four sites of the Tokaj wine region in Mad and two reference sites in Eger, � Hungary, across different seasons for 2 years. Fungal endophytes of young and mature leaves, flowers and grape bunches were collected at different phenological stages. Based on each technique, Aureobasidium pullulans, Cladosporium spp. and the complex species Alternaria alternata dominated the community at every site, season and plant organ. We found no significant difference among communities in distinct neighbouring vineyards, nor when compared with the distant reference sites. We can conclude that the different shoot parts of the Furmint grapevines harbour a common core group of fungal community in these regions
    corecore