60 research outputs found
Picosecond ionization dynamics in femtosecond filaments at high pressures
We investigate the plasma dynamics inside a femtosecond-pulse-induced filament generated in an argon gas for a wide range of pressures up to 60 bar. At higher pressures, we observe ionization immediately following a pulse, with up to a threefold increase in the electron density within 30 ps after the filamentary propagation of a femtosecond pulse. Our study suggests that this picosecond evolution can be attributed to collisional ionization including Penning and associative ionizations and electron-impact ionization of excited atoms generated during the pulse. The dominance of excited atoms over ionized atoms at the end of the pulse also indicates an intrapulse inhibition of avalanche ionization. This delayed ionization dynamics provides evidence for diagnosing atomic and molecular excitation and ionization in intense laser interaction with high-pressure gases
Self-amplified photo-induced gap quenching in a correlated electron material.
Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains-on a microscopic level-the extremely fast response of this material to ultrafast optical excitation
Recommended from our members
Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons
Time- and angle-resolved extreme ultraviolet photoemission spectroscopy is used to study the electronic structure dynamics in BaFe2As2 around the high-symmetry points Γ and M. A global oscillation of the Fermi level at the frequency of the A1g(As) phonon mode is observed. It is argued that this behavior reflects a modulation of the effective chemical potential in the photoexcited surface region that arises from the high sensitivity of the band structure near the Fermi level to the A1g(As) phonon mode combined with a low electron diffusivity perpendicular to the layers. The results establish a novel way to tune the electronic properties of iron pnictides: coherent control of the effective chemical potential. The results further suggest that the equilibration time for the effective chemical potential needs to be considered in the ultrafast electronic structure dynamics of materials with weak interlayer coupling. © 2014 American Physical Society
Thermosensitivity of the Saccharomyces cerevisiae gpp1gpp2 double deletion strain can be reduced by overexpression of genes involved in cell wall maintenance
A Saccharomyces cerevisiae strain in which the GPP1 and GPP2 genes, both encoding glycerol-3-phosphate phosphatase isoforms, are deleted, displays both osmo- and thermosensitive (ts) phenotypes. We isolated genes involved in cell wall maintenance as multicopy suppressors of the gpp1gpp2 ts phenotype. We found that the gpp1gpp2 strain is hypersensitive to cell wall stress such as treatment with β-1,3-glucanase containing cocktail Zymolyase and chitin-binding dye Calcofluor-white (CFW). Sensitivity to Zymolyase was rescued by overexpression of SSD1, while CFW sensitivity was rescued by SSD1, FLO8 and WSC3-genes isolated as multicopy suppressors of the gpp1gpp2 ts phenotype. Some of the isolated suppressor genes (SSD1, FLO8) also rescued the lytic phenotype of slt2 deletion strain. Additionally, the sensitivity to CFW was reduced when the cells were supplied with glycerol. Both growth on glycerol-based medium and overexpression of SSD1, FLO8 or WSC3 had additive suppressing effect on CFW sensitivity of the gpp1gpp2 mutant strain. We also confirmed that the internal glycerol level changed in cells exposed to cell wall perturbation. © 2007 Springer-Verlag
Surface-Associated Plasminogen Binding of Cryptococcus neoformans Promotes Extracellular Matrix Invasion
BACKGROUND:The fungal pathogen Cryptococcus neoformans is a leading cause of illness and death in persons with predisposing factors, including: malignancies, solid organ transplants, and corticosteroid use. C. neoformans is ubiquitous in the environment and enters into the lungs via inhalation, where it can disseminate through the bloodstream and penetrate the central nervous system (CNS), resulting in a difficult to treat and often-fatal infection of the brain, called meningoencephalitis. Plasminogen is a highly abundant protein found in the plasma component of blood and is necessary for the degradation of fibrin, collagen, and other structural components of tissues. This fibrinolytic system is utilized by cancer cells during metastasis and several pathogenic species of bacteria have been found to manipulate the host plasminogen system to facilitate invasion of tissues during infection by modifying the activation of this process through the binding of plasminogen at their surface. METHODOLOGY:The invasion of the brain and the central nervous system by penetration of the protective blood-brain barrier is a prerequisite to the establishment of meningoencephalitis by the opportunistic fungal pathogen C. neoformans. In this study, we examined the ability of C. neoformans to subvert the host plasminogen system to facilitate tissue barrier invasion. Through a combination of biochemical, cell biology, and proteomic approaches, we have shown that C. neoformans utilizes the host plasminogen system to cross tissue barriers, providing support for the hypothesis that plasminogen-binding may contribute to the invasion of the blood-brain barrier by penetration of the brain endothelial cells and underlying matrix. In addition, we have identified the cell wall-associated proteins that serve as plasminogen receptors and characterized both the plasminogen-binding and plasmin-activation potential for this significant human pathogen. CONCLUSIONS:The results of this study provide evidence for the cooperative role of multiple virulence determinants in C. neoformans pathogenesis and suggest new avenues for the development of anti-infective agents in the prevention of fungal tissue invasion
Recommended from our members
High harmonic interferometry of the Lorentz force in strong mid-infrared laser fields
The interaction of intense mid-infrared laser fields with atoms and molecules leads to a range of new opportunities, from the production of bright, coherent radiation in the soft x-ray range to imaging molecular structures and dynamics with attosecond temporal and sub-angstrom spatial resolution. However, all these effects, which rely on laser-driven recollision of an electron removed by the strong laser field and the parent ion, suffer from the rapidly increasing role of the magnetic field component of the driving pulse: the associated Lorentz force pushes the electrons off course in their excursion and suppresses all recollision-based processes, including high harmonic generation, elastic and inelastic scattering. Here we show how the use of two non-collinear beams with opposite circular polarizations produces a forwards ellipticity which can be used to monitor, control, and cancel the effect of the Lorentz force. This arrangement can thus be used to re-enable recollision-based phenomena in regimes beyond the long-wavelength breakdown of the dipole approximation, and it can be used to observe this breakdown in high-harmonic generation using currently-available light sources
Recommended from our members
Group velocity matching in high-order harmonic generation driven by mid-infrared lasers
We analyze the role of group-velocity matching (GVM) in the macroscopic build up of the high-harmonic signal generated in gas targets at high pressures. A definition of the walk-off length, associated with GVM, in the non-perturbative intensity regime of high-harmonic generation is given. Semiclassical predictions based on this definition are in excellent agreement with full quantum simulations. We demonstrate that group velocity matching is a relevant factor in high harmonic generation and the isolation of attosecond pulses driven by long wavelength lasers and preferentially selects contributions from the short quantum trajectories
Recommended from our members
Isolated broadband attosecond pulse generation with near- and mid-infrared driver pulses via time-gated phase matching.
We present a theoretical analysis of the time-gated phase matching (ionization gating) mechanism in high-order harmonic generation for the isolation of attosecond pulses at near-infrared and mid-infrared driver wavelengths, for both few-cycle and multi-cycle driving laser pulses. Results of our high harmonic generation and three-dimensional propagation simulations show that broadband isolated pulses spanning from the extreme-ultraviolet well into the soft X-ray region of the spectrum can be generated for both few-cycle and multi-cycle laser pulses. We demonstrate the key role of absorption and group velocity matching for generating bright, isolated, attosecond pulses using long wavelength multi-cycle pulses. Finally, we show that this technique is robust against carrier-envelope phase and peak intensity variations
- …
