133 research outputs found

    Relative acceptance of brodifacoum pellets and soft bait sachets by Polynesian rats (Rattus exulans) on Wake Atoll

    Get PDF
    Removing invasive rats from island ecosystems using rodenticides has proven conservation benefits and is an important management tool for conserving and restoring island ecosystems. However, rodenticide-based eradications can fail if not all rats consume enough bait to result in lethal toxicosis. A recent post-operational review of a failed attempt to eradicate rats from Wake Atoll suggested that some individuals may not have ingested a lethal dose of rodenticide due to potential dietary and/or sensory preferences developed via regular access to anthropogenic food sources. These food sources may be higher in fats and oils, possessing different sensory properties (e.g., softer, chewier, etc.) than the harder pellet formulation of the rodenticide Brodifacoum 25W Conservation (B-25W) used in the eradication attempt. To test this theory, we captured rats from two areas on Wake Island where they may have regular access to human food sources, as well as an uninhabited part of island where rats presumably have less access to human-based food sources and therefore are less likely to be preconditioned for these food types. We subjected them to a head-to-head two-choice bait selection trial between a “soft” sachet formulation of a brodifacoum-based bait, FINAL Soft Bait with Lumitrack® (FINAL), versus the harder pellet formulation of B-25W. Regardless of which habitat rats were captured in, rats overwhelmingly preferred the pellet formulation. No rats in the head-to-head trail consumed any of the FINAL bait, and 100% of the rats that consumed B-25W died. Of the rats in a separate no-choice trail of just FINAL bait, 5 failed to eat any bait; of the rats that did consume some of the FINAL bait, 80% died. Our results demonstrate that Polynesian rats on Wake Atoll do not prefer this soft formulation of brodifacoum-based rodenticide bait. Our results suggest that baiting strategies in the inhabited regions of the atoll, for a proposed eradication attempt, should continue to focus on utilizing traditional pellet formulations. While these results are unequivocal in our test case, we suggest caution in making inference to other situations where dietary preferences of local rodent populations may differ, and local environmental conditions may make other baiting choices more appropriate and efficacious

    Advanced modulation technology development for earth station demodulator applications. Coded modulation system development

    Get PDF
    A jointly optimized coded modulation system is described which was designed, built, and tested by COMSAT Laboratories for NASA LeRC which provides a bandwidth efficiency of 2 bits/s/Hz at an information rate of 160 Mbit/s. A high speed rate 8/9 encoder with a Viterbi decoder and an Octal PSK modem are used to achieve this. The BER performance is approximately 1 dB from the theoretically calculated value for this system at a BER of 5 E-7 under nominal conditions. The system operates in burst mode for downlink applications and tests have demonstrated very little degradation in performance with frequency and level offset. Unique word miss rate measurements were conducted which demonstrate reliable acquisition at low values of Eb/No. Codec self tests have verified the performance of this subsystem in a stand alone mode. The codec is capable of operation at a 200 Mbit/s information rate as demonstrated using a codec test set which introduces noise digitally. The measured performance is within 0.2 dB of the computer simulated predictions. A gate array implementation of the most time critical element of the high speed Viterbi decoder was completed. This gate array add-compare-select chip significantly reduces the power consumption and improves the manufacturability of the decoder. This chip has general application in the implementation of high speed Viterbi decoders

    Electromagnetic transitions of the helium atom in superstrong magnetic fields

    Full text link
    We investigate the electromagnetic transition probabilities for the helium atom embedded in a superstrong magnetic field taking into account the finite nuclear mass. We address the regime \gamma=100-10000 a.u. studying several excited states for each symmetry, i.e. for the magnetic quantum numbers 0,-1,-2,-3, positive and negative z parity and singlet and triplet symmetry. The oscillator strengths as a function of the magnetic field, and in particular the influence of the finite nuclear mass on the oscillator strengths are shown and analyzed.Comment: 10 pages, 8 figure

    Efficient Blue Phosphorescence in Gold(I)‐Acetylide Functionalized Coinage Metal Bis(amidinate) Complexes

    Get PDF
    The synthesis of linear symmetric ethynyl‐ and acetylide‐amidinates of the coinage metals is presented. Starting with the desilylation of the complexes [{Me3_{3}SiC≡CC(NDipp)2_{2}}2_{2}M2_{2}] (Dipp=2,6‐diisopropylphenyl) (M=Cu, Au) it is demonstrated that this compound class is suitable to serve as a versatile metalloligand. Deprotonation with n‐butyllithium and subsequent salt metathesis reactions yield symmetric tetranuclear gold(I) acetylide complexes of the form [{(PPh3_{3})AuC≡CC(NDipp)2_{2}}2_{2}M2_{2}] (M=Cu, Au). The corresponding Ag complex [{(PPh3_{3})AuC≡CC(NDipp)2_{2}}2_{2}Ag2_{2}] was obtained by a different route via metal rearrangement. All compounds show bright blue or blue‐green microsecond long phosphorescence in the solid state, hence their photophysical properties were thoroughly investigated in a temperature range of 20–295 K. Emission quantum yields of up to 41 % at room temperature were determined. Furthermore, similar emissions with quantum yields of 15 % were observed for the two most brightly luminescent complexes in thf solution

    Alkali Metal Complexes of a Bis(diphenylphosphino)methane Functionalized Amidinate Ligand: Synthesis and Luminescence

    Get PDF
    A novel bis(diphenylphosphino)methane (DPPM) functionalized amidine ligand (DPPM−C(N-Dipp)2_{2}H) (Dipp=2,6-diisopropylphenyl) was synthesized. Subsequent deprotonation with suitable alkali metal bases resulted in the corresponding complexes [M{DPPM−C(N-Dipp)2_{2}}(Ln)] (M=Li, Na, K, Rb, Cs; L=thf, Et2_{2}O). The alkali metal complexes form monomeric species in the solid state, exhibiting intramolecular metal-π-interactions. In addition, a caesium derivative [Cs{PPh2_{2}CH2_{2}-C(N-Dipp)2_{2}}]6_{6} was obtained by cleavage of a diphenylphosphino moiety, forming an unusual six-membered ring structure in the solid state. All complexes were fully characterized by single crystal X-ray diffraction, NMR spectroscopy, IR spectroscopy as well as elemental analysis. Furthermore, the photoluminescent properties of the complexes were thoroughly investigated, revealing differences in emission with regards to the respective alkali metal. Interestingly, the hexanuclear [Cs{PPh2_{2}CH2_{2}-C(N-Dipp)2_{2}}]6_{6} metallocycle exhibits a blue emission in the solid state, which is significantly red-shifted at low temperatures. The bifunctional design of the ligand, featuring orthogonal donor atoms (N vs. P) and a high steric demand, is highly promising for the construction of advanced metal and main group complexes

    Relative palatability and efficacy of brodifacoum-25D conservation rodenticide pellets for mouse eradication on Midway Atoll

    Get PDF
    Invasive mice (Mus spp.) can negatively impact island species and ecosystems. Because fewer island rodent eradications have been attempted for mice compared to rats (Rattus spp.), less is known about efficacy and palatability of rodenticide baits for mouse eradications. We performed a series of bait acceptance and efficacy cage trials using a standard formulation of brodifacoum-based rodenticide on wild-caught mice from Sand Island, Midway Atoll, to help inform a proposed eradication there. Mice were offered ad libitum brodifacoum pellets along with various alternative food sources, and a “no choice” treatment group received only bait pellets. Mortality in the no choice trial was 100%; however, when offered alternative foods, mice preferred the alternative diets to the bait, leading to low mortality (40%). Because there was concern that the bittering agent Bitrex® in the formulation may have reduced palatability, we conducted a subsequent trial comparing brodifacoum bait with and without Bitrex. Mortality in the with-Bitrex treatment group was slightly higher, indicating that the bittering agent was not likely responsible for low efficacy. Laboratory trials cannot account for the numerous environmental and behavioral factors that influence bait acceptance nor replicate the true availability of alternative food sources in the environment, so low efficacy results from these trials should be interpreted cautiously and not necessarily as a measure of the likelihood of success or failure of a proposed eradication

    Complementary roles of murine NaV1.7, NaV1.8 and NaV1.9 in acute itch signalling

    Get PDF
    Acute pruritus occurs in various disorders. Despite severe repercussions on quality of life treatment options remain limited. Voltage-gated sodium channels (NaV) are indispensable for transformation and propagation of sensory signals implicating them as drug targets. Here, NaV1.7, 1.8 and 1.9 were compared for their contribution to itch by analysing NaV-specific knockout mice. Acute pruritus was induced by a comprehensive panel of pruritogens (C48/80, endothelin, 5-HT, chloroquine, histamine, lysophosphatidic acid, trypsin, SLIGRL, β-alanine, BAM8-22), and scratching was assessed using a magnet-based recording technology. We report an unexpected stimulus-dependent diversity in NaV channel-mediated itch signalling. NaV1.7−/− showed substantial scratch reduction mainly towards strong pruritogens. NaV1.8−/− impaired histamine and 5-HT-induced scratching while NaV1.9 was involved in itch signalling towards 5-HT, C48/80 and SLIGRL. Furthermore, similar microfluorimetric calcium responses of sensory neurons and expression of itch-related TRP channels suggest no change in sensory transduction but in action potential transformation and conduction. The cumulative sum of scratching over all pruritogens confirmed a leading role of NaV1.7 and indicated an overall contribution of NaV1.9. Beside the proposed general role of NaV1.7 and 1.9 in itch signalling, scrutiny of time courses suggested NaV1.8 to sustain prolonged itching. Therefore, NaV1.7 and 1.9 may represent targets in pruritus therapy
    corecore