120 research outputs found

    Design, Optimization, and Evaluation of Integrally-Stiffened Al-2139 Panel with Curved Stiffeners

    Get PDF
    A curvilinear stiffened panel was designed, manufactured, and tested in the Combined Load Test Fixture at NASA Langley Research Center. The panel is representative of a large wing engine pylon rib and was optimized for minimum mass subjected to three combined load cases. The optimization included constraints on web buckling, material yielding, crippling or local stiffener failure, and damage tolerance using a new analysis tool named EBF3PanelOpt. Testing was performed for the critical combined compression-shear loading configuration. The panel was loaded beyond initial buckling, and strains and out-of-plane displacements were extracted from a total of 20 strain gages and 6 linear variable displacement transducers. The VIC-3D system was utilized to obtain full field displacements/strains in the stiffened side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high fidelity nonlinear finite element analysis. The experimental data were also compared with linear elastic finite element results of the panel/test-fixture assembly. Overall, the panel buckled very near to the predicted load in the web regions

    NASA Aeronautics Multidisciplinary Analysis and Design Fellowship Program

    Get PDF
    For a number of years, Virginia Tech had been on the forefront of research in the area of multidisciplinary analysis and design. In June of 1994, faculty members from aerospace and ocean engineering, engineering science and mechanics, mechanical engineering, industrial engineering, mathematics and computer sciences, at Virginia Tech joined together to form the Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles. The center was established with the single goal: to perform research that is relevant to the needs of the US industry and to foster collaboration between the university, government and industry. In October of 1994, the center was chosen by NASA headquarters as one of the five university centers to establish a fellowship program to develop a graduate program in multidisciplinary analysis and design. The fellowship program provides full stipend and tuition support for seven U. S. students per year during their graduate studies. To advise us regarding the problems faced by the industry, an industrial advisory board has been formed consisting of representatives from industry as well as government laboratories. The function of the advisory board is to channel information from its member companies to faculty members concerning problems that need research attention in the general area of multidisciplinary design optimization (MDO). The faculty and their graduate students make proposals to the board on how to address these problems. At the annual board meeting in Blacksburg, the board discusses the proposals and suggests which students get funded under the NASA fellowship program. All students participating in the program are required to spend 3-6 months in industry working on their research projects. We are completing the third year of the fellowship program and have had three advisory board meetings in Blacksburg

    Design, Optimization, and Evaluation of A1-2139 Compression Panel with Integral T-Stiffeners

    Get PDF
    A T-stiffened panel was designed and optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis and design tool named EBF3PanelOpt. The panel was designed for a compression loading configuration, a realistic load case for a typical aircraft skin-stiffened panel. The panel was integrally machined from 2139 aluminum alloy plate and was tested in compression. The panel was loaded beyond buckling and strains and out-of-plane displacements were extracted from 36 strain gages and one linear variable displacement transducer. A digital photogrammetric system was used to obtain full field displacements and strains on the smooth (unstiffened) side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high-fidelity nonlinear finite element analysis

    Design, Optimization and Evaluation of Integrally Stiffened Al 7050 Panel with Curved Stiffeners

    Get PDF
    A curvilinear stiffened panel was designed, manufactured, and tested in the Combined Load Test Fixture at NASA Langley Research Center. The panel was optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis tool named EBF3PanelOpt. The panel was designed for a combined compression-shear loading configuration that is a realistic load case for a typical aircraft wing panel. The panel was loaded beyond buckling and strains and out-of-plane displacements were measured. The experimental data were compared with the strains and out-of-plane deflections from a high fidelity nonlinear finite element analysis and linear elastic finite element analysis of the panel/test-fixture assembly. The numerical results indicated that the panel buckled at the linearly elastic buckling eigenvalue predicted for the panel/test-fixture assembly. The experimental strains prior to buckling compared well with both the linear and nonlinear finite element model

    Guidelines and Recommendations on the Use of Higher OrderFinite Elements for Bending Analysis of Plates

    Get PDF
    This paper compares and evaluates various plate finite elements to analyse the static response of thick and thin plates subjected to different loading and boundary conditions. Plate elements are based on different assumptions for the displacement distribution along the thickness direction. Classical (Kirchhoff and Reissner-Mindlin), refined (Reddy and Kant), and other higher-order displacement fields are implemented up to fourth-order expansion. The Unified Formulation UF by the first author is used to derive finite element matrices in terms of fundamental nuclei which consist of 3 × 3 arrays. The MITC4 shear-locking free type formulation is used for the FE approximation. Accuracy of a given plate element is established in terms of the error vs. thickness-to-length parameter. A significant number of finite elements for plates are implemented and compared using displacement and stress variables for various plate problems. Reduced models that are able to detect the 3D solution are built and a Best Plate Diagram (BPD) is introduced to give guidelines for the construction of plate theories based on a given accuracy and number of terms. It is concluded that the UF is a valuable tool to establish, for a given plate problem, the most accurate FE able to furnish results within a certain accuracy range. This allows us to obtain guidelines and recommendations in building refined elements in the bending analysis of plates for various geometries, loadings, and boundary conditions

    A Review on the Analysis of Laminated Shells

    No full text

    Preliminary Design of a Structural Wing Box Under a Twist Constraint Part I

    No full text

    Buckling of Axially Loaded Beam-Plate With Multiple Delaminations

    No full text

    Book Reviews

    No full text
    • …
    corecore