https://ntrs.nasa.gov/search.jsp?R=19980202468 2020-06-16T00:20:42+00:00Z

NASA/CR-1998-206812

NGT - 10025

FINIL

7N-31-CR

OCIT

05-7086

NASA AERONAUTICS MULTIDISCIPLINARY ANALYSIS AND DESIGN FELLOWSHIP PROGRAM

Final Report

January 1998

Principal Investigators:

B. Grossman, Z. Gürdal, R. T.Haftka,

R. K. Kapania, W. H. Mason and D. T. Mook

Department of Aerospace and Ocean Engineering Virginia Polytechnic Institute and State University Blacksburg, VA 24061

NASA AERONAUTICS MULTIDISCIPLINARY ANALYSIS AND DESIGN FELLOWSHIP PROGRAM FINAL REPORT

The subject grant NGT-10025 was in effect from 10/1/93 until 10/31/96. The remaining two years of funding for this effort was transferred from NASA Headquarters to NASA Langley and a new grant NGT-1-52155 was issued covering the period 11/1/96 to 11/30/98. This report serves as the final report of NGT-10025. The efforts described herein continue under NGT-1-52155.

For a number of years, Virginia Tech had been on the forefront of research in the area of multidisciplinary analysis and design. In June of 1994, faculty members from aerospace and ocean engineering, engineering science and mechanics, mechanical engineering, industrial engineering, mathematics and computer sciences, at Virginia Tech joined together to form the Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles. The center was established with the single goal: to perform research that is relevant to the needs of the US industry and to foster collaboration between the university, government and industry. In October of 1994, the center was chosen by NASA headquarters as one of the five university centers to establish a fellowship program to develop a graduate program in multidisciplinary analysis and design. The fellowship program provides full stipend and tuition support for seven U. S. students per year during their graduate studies.

To advise us regarding the problems faced by the industry, an industrial advisory board has been formed consisting of representatives from industry as well as government laboratories. The present membership includes major aerospace companies: Aurora Flight Sciences, Boeing Helicopter Division, Cessna, Ford, General Electric, Hughes, Lockheed, McDonnell Douglas, Northrop, Sikorsky, smaller, aerospace software companies: Aerosoft, Phoenix Integration and Proteus Engineering, along with representatives from government agencies, including: NASA Ames, Langley and Lewis. The function of the advisory board is to channel information from its member companies to faculty members concerning problems that need research attention in the general area of multidisciplinary design optimization (MDO). The faculty and their graduate students make proposals to the board on how to address these problems. At the annual board meeting in Blacksburg, the board discusses the proposals and suggests which students get funded under the NASA fellowship program. All students participating in the program are required to spend 3–6 months in industry working on their research projects.

We are completing the third year of the fellowship program and have had three advisory board meetings in Blacksburg. Eight students have spent the three month periods in industry and two students are spending this current semester in industry. In addition to the research element of the MAD Center efforts we also have an academic component. We have developed a menu of design-related graduate courses and two new courses: one in Aerospace Manufacturing and another in MDO. Some of the MAD Center activities are described on the world-wide web at http://www.aoe.vt.edu/mads.html. The MAD Center represents an innovative approach for joint Industry-Government-University cooperation in the development of a comprehensive program in engineering education which addresses the design needs of industry.

The following charts list details of the grant: mission of the MAD Center, faculty members, purpose of the industrial advisory board, board members, summary of the graduate and undergrad-

uate program, history of the fellowship program, mission of the fellowship program, requirements of MAD fellows, course requirements, students supported, advisory board meeting participation, MAD Center research papers.

Multidisciplinary Analysis and Design Center for Advanced Vehicles

- vehicles including aircraft, spacecraft, ships, submarines, high-speed trains Faculty members with a common interest in MDO applied to advanced and automobiles.
- Research to answer industrial needs in the multidisciplinary design area.
- Provide the graduate students opportunities for research collaboration with industry.

MAD Center Faculty Members

→ MAD Center

Board of Directors:

CFD Optim.	Struct. Optim.	Struct. Optim.	Aeroelasticity	Aero. Des.	Aero./Manuf.
AOE	AOE/ESM	AMES	AOE	AOE	AOE
Va Tech	Va Tech	U. E.	Va Tech	Va Tech	Va Tech
B. Grossman	Z. Gürdal	R. Haftka	R. Kapania	W. Mason	J. Schetz

Faculty Members:

ESM Auto. Struct.	ESM Aeroelasticity		ESM Nonlinear Dyn.	ME Rapid Prototyp.	ME Propulsion	ISE Manufacturing	ISE Operations Res.
R. Landgraf	L. Libresçu	A. Loos	A. Nayfeh	J. H. Bohn	W. O'Brien	M. Diesenroth	J. Nachlas
Control Des.	Optim. Control	Ship Des.	Probabil. Des.	Aero/Controls	Optim. Control	Shape Optim.	Parallel Comp.
•	•	AOE	•	•	• •		S
M. Anderson	E. Cliff	O. Hughes	E. Nikolaides	D. Mook	J. Burns	M. Gunzberger	L. Watson

Industrial Advisory Board

■ → MAD Center

- Board to provide center members with descriptions of industrial needs in the area of MDO.
- Board to review proposals by faculty member/graduate student teams for student support for the research work
- Board will make recommendations for funding with NASA Fellowship program funds.
- Will solicit from industry commitments for supporting graduate students working on these projects for at least one semester in industry.
- Match industrial groups with present federal and state research projects.
- Set up university-industry research teams for future funding opportunities.

Industrial Advisory Board Members

→ MAD Center

Aerosoft

Aurora Flight Sciences Boeing - Philadelphia

Boeing - Long Beach Boeing - St. Louis

Cessna

Ford

Lockheed Martin General Electric

Microcraft

Northrop Grumman Phoenix Integration

Proteus Engineering Sikorsky Aircraft

NASA Langley NASA Langley NASA Ames NASA Ames

NASA Lewis

Dr. R. W. Walters Dr. M. Hutchison Mr. H. Rosenstein H. Rosenstein

Mr. M. Sheffler

Mr. R. Yurkovich

Mr. J. Geising
Dr. T. Seitz
Dr. Richard DeVries
Dr. V. Kumar
Dr. Y. Tassa
Dr. J. Benek
Dr. J. Benek

Dr. B. Malone

Mr. Tobin McNatt

Mr. Christos Kassapoglou

Mr. P. Gelhausen

Dr. G. Guruswamy

Mr. P. Coen

Dr. J. Sobieski Dr. C. Chamis C. Chamis

Student Curriculum and Research

→ MAD Center

Virginia Tech design education:

- Graduate Program in MDO.
- Students must spend at least one semester in industry.
 - Disciplinary degree with specialization in design.
 - Selected "core" courses.
- New Aerospace Manufacturing and MDO Courses.
 - Practice-Oriented Master's Degree.
- Improved design in Under-Graduate Program.
- Optimization in 2nd year with Mathematica/Matlab.
- Mini-design optimization projects in 2nd & 3rd years.
- Senior/Graduate Aerospace Manufacturing and MDO Courses.
- Senior capstone design involving several departments with international participation.

■ → MAD Center

- MAD Center established June 1994.
- NASA AMDAF Fellowship Program awards announced Sept. 1994. 5 Awards, \$200K/year, 3years

Virginia Tech, Georgia Tech, BYU, Cal Poly, Clemson

11/94-11/96, \$216K, NASA Hqtrs.

11/96-11/97, \$176K, NASA Langley, MDO Branch.

Meetings: 10/94, 8/95, 8/96, (11/97 scheduled). Industrial Advisory Board established Sept. 1994

New graduate program in design being developed.

MDO Course: Fall 1995

Aerospace Manufacturing Course: Spring 1996

- Joint industry-university research activities underway.
- 7 graduate students per year supported on MAD projects.

NASA Multidisciplinary Design and Analysis Fellowship Program

■ → MAD Center

- O Innovative approach for joint Industry-Government-University cooperation in the development of a comprehensive program in engineering education which addresses the design needs of industry.
- O Industry-sponsored research is more likely to be useful when the industrial sponsor teams up with the faculty and students to perform joint work.
- O Joint industry-university-government projects will make the program self sustaining.

Requirements for MAD Fellows

■ → MAD Center

MAD Fellows:

- O Graduate students enrolled in the MAD center certificate program.
- O Satisfy the requirements for a degree in one of the disciplinary programs, e.g., Aerospace Eng., Eng. Mechanics.

Additional requirements:

- Perform thesis research in multidisciplinary analysis and design of advanced vehicles.
- Spend an internship period of 3-6 months in industry working on a MAD project.
- Complete MAD related course work in two (M.S.) or three (Ph.D) of the following areas:

Optimization Methods

Manufacturing Engineering

System Engineering & Economic Analysis

Computer-Aided Design

Course Requirements for MAD Fellows

→ MAD Center

Optimization Methods Courses:

- AOE/ESM: Eng. Design Optimization, Structural Optimization
 - AOE: Optimization Techniques
 - ISE: Optimization I,II
- MSCI: Management Science, Advanced Management Science

Manufacturing Engineering Courses:

- ISE: Industrial Automation, Manufact. Sys. Eng., Manufact. Costs & Prod. Econ., Digital Computers in Manufact. Sys. Control
 - ESM: Composite Manufacturing
 - AOE: Aerospace Manufacturing

Systems Engineering Courses:

- ENGR: The Systems Eng. Process, Applied Systems Eng.
 - ISE: Advanced Engineering Economy

Computer Aided Design Courses:

- ME: Computer-Aided Design I,II
- AOE: Computer-Aided Design of Vehicle Structures
 - ESM: Scientific Visual Analysis with Multimedia

Students Supported By MAD Center

→ MAD Center

MAD Fellowship program support:

Lockheed Martin Schetz / Diesenroth Grossman / Mason Mason / Grossman Kapania / Walters Gürdal/Kapania Gürdal / Haftka Gürdal Mook Joel Grasmeyer Jonathan Rich David Cohen Robert Soper Chuck Baker Brian Owen Scott Ragon Jason Tyll

McDonnell Douglas - West McDonnell Douglas - West Northrop Grumman Sikorsky Cessna

Related MAD Center support:

McDonnell Douglas **Boeing Commercial** NASA - HPCCP NASA Langley Cessna Grossman / Haftka Mason / Grossman Grossman / Mason Kapania Kapania Haftka Gürdal Vladimir Balabanov Grant Soremekun Manoj Bhardwaj Oleg Golividov **Tony Giunta** Duane Knill Ajit Shenoy P. Mohan

Sikorski

MAD Industrial Advisory Board Meeting, 8/2-3/1996

WWW.			→ MAD Center
INDUSTRY		FACULTY	STUDENTS
Matthew Hutchison	Aurora Flight Sciences	Bernard Grossman	Vladimir Balabanov
Marc Sheffler	Boeing Helicopters	Raphael Haftka	Manoj Bhardwaj
Harold Rosenstein	Boeing Helicopters	Rakesh Kapania	David Cohen
John Axtel	Cessna	William Mason	Mark Eaglesham
Terry Denardo	Hughes Space & Comm.	Zafer Gürdal	Anthony Giunta
Alex Benoliel	Hughes Space & Comm.	Eugene Cliff	Oleg Golovidov
Rudy Yurkovich	McDonnell Douglas -East	Joseph Schetz	Satish Haryadi
Joseph Giesing	McDonnell Douglas - West	Michael Deisenroth	Scott Ragon
George Tzong	McDonnell Douglas - West	James Marchman	Johnathan Rich
John Benek	Micro Craft		Ajit Shenoy
Stephen Brown	Northrop Grumman		Grant Soremekun
Valentin Gushchin	Russian Academy of Sciences		Jason Tyll

Army Aviation & Troop Com.

NASA Langley

Jaroslaw Sobieski

Christos Chamis

William Lewis

NASA Lewis

NASA Langley

NASA Hqtrs.

NASA Ames

Guru Guruswamy

Thomas Zang

GOVERNMENT

Gerald Seidel

6th Symposium on Multidisciplinary Analysis & Optimization

→ MAD Center

MAD Center papers:

students

- 1. Balabanov*, Kaufman*, Knill*, Giunta*, Haftka, Grossman, Mason, Watson, "Dependence of Optimal Structural Weight on Aerodynamic Shape for a High Speed Civil Transport."
- 2. Chai* and Mason, "Landing Gear Integration in Aircraft Conceptual Design."
- 3. Cliff, Heinkenschloss and Shenoy*, "An Optimal Design Problem Governed by the 1-D Euler Equations."
- 4. Giunta*, Balabanov*, Kaufman*, Grossman, Mason, Watson and Haftka, "Wing Design for a High-Speed Civil Transport Using a Design of Experiments Methodology."
- 5. Henderson*, Gürdal and Loos, "Combined Struct. and Manufact. Optim. of Stiffened Composite Panels."
- 6. Issac* and Kapania, "Aeroelastic Sensitivity Analysis of Wings Using Automatic Differentiation."
- 7. Kapania, Bhardwaj*, Reichenback and Guruswamy, "Aeroelastic Analysis of Modern Complex Wings."
- 8. Mohan * , Kapania and Jakubowski, "Control of Thermal Deformations of a Spherical Mirror Segment."
- $9. Soremekun^*$, Gürdal, Haftka and Watson, "Improving Genetic Algorithm Efficiency and Reliability in the Design and Optimization of Composite Structures."
- 10. Tyll*, Eaglesham*, Schetz and Deisenroth, "An MDO Design Methodology for the Concurrent Aerodynamic/Cost Design of MagLev Vehicles."
- 11. Anderson and Mason, "An MDO Approach to Control-Configured-Vehicle Design."